Patents by Inventor Daniel Glenn Gibson

Daniel Glenn Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11542529
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: January 3, 2023
    Assignee: Codex DNA, Inc.
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson
  • Publication number: 20200190539
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson
  • Patent number: 10577629
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 3, 2020
    Assignee: SGI-DNA, Inc.
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson
  • Publication number: 20170233764
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Application
    Filed: December 20, 2016
    Publication date: August 17, 2017
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson
  • Patent number: 9534251
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: January 3, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson
  • Publication number: 20130295645
    Abstract: The present invention relates to an in vitro method, using isolated protein reagents, for joining two double-stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest.
    Type: Application
    Filed: April 16, 2013
    Publication date: November 7, 2013
    Inventors: Daniel Glenn Gibson, Hamilton O. Smith
  • Patent number: 8435736
    Abstract: The present invention relates to an in vitro method, using isolated protein reagents, for joining two double-stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 7, 2013
    Assignee: Synthetic Genomics, Inc.
    Inventors: Daniel Glenn Gibson, Hamilton O. Smith
  • Publication number: 20100311126
    Abstract: The present invention relates, e.g., to an in vitro method, using isolated protein reagents, for joining two double-stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising (a) chewing back the DNA molecules with an enzyme having an exonuclease activity, to yield single-stranded overhanging portions of each DNA molecule which contain a sufficient length of the region of sequence identity to hybridize specifically to each other; (b) specifically annealing the single-stranded overhangs; and (c) repairing single-stranded gaps in the annealed DNA molecules and sealing the nicks thus formed (ligating the nicked DNA molecules). The region of sequence identity generally comprises at least 20 non-palindromic nucleotides (nt), e.g., at least about 40 non-palindromic nt.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 9, 2010
    Inventors: Daniel Glenn GIBSON, Hamilton O. SMITH
  • Patent number: 7776532
    Abstract: The present invention relates, e.g., to an in vitro method, using isolated protein reagents, for joining two double-stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising (a) chewing back the DNA molecules with an enzyme having an exonuclease activity, to yield single-stranded overhanging portions of each DNA molecule which contain a sufficient length of the region of sequence identity to hybridize specifically to each other; (b) specifically annealing the single-stranded overhangs; and (c) repairing single-stranded gaps in the annealed DNA molecules and sealing the nicks thus formed (ligating the nicked DNA molecules). The region of sequence identity generally comprises at least 20 non-palindromic nucleotides (nt), e.g., at least about 40 non-palindromic nt.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: August 17, 2010
    Assignee: Synthetic Genomics, Inc.
    Inventors: Daniel Glenn Gibson, Hamilton O. Smith
  • Publication number: 20100184187
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 22, 2010
    Inventors: Lei YOUNG, Hamilton O. Smith, Daniel Glenn Gibson
  • Patent number: 7723077
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonculease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: May 25, 2010
    Assignee: Synthetic Genomics, Inc.
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson