Patents by Inventor Daniel Gordon Raymer

Daniel Gordon Raymer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10641916
    Abstract: Seismic data processing using one or more non-linear stacking enabling detection of weak signals relative to noise levels. The non-linear stacking includes a double phase, a double phase-weighted, a real phasor, a squared real phasor, a phase and an N-th root stack. Microseismic signals as recorded by one or more seismic detectors and transformed by transforming the signal to enhance detection of arrivals. The transforms enable the generation of an image, or map, representative of the likelihood that there was a source of seismic energy occurring at a given point in time at a particular point in space, which may be used, for example, in monitoring operations such as hydraulic fracturing, fluid production, water flooding, steam flooding, gas flooding, and formation compaction.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 5, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ali Ozbek, Julian Drew, Anthony Probert, Daniel Gordon Raymer
  • Publication number: 20150177400
    Abstract: Utilizing the phase component of a moment tensor for a seismic data signal, isolated from the amplitude component, by automatically detecting polarity changes that occur over a focal mechanism of the seismic event, and correcting for such polarity reversals. Transforming seismic (including microseismic) signals as recorded by one or more seismic detectors to enhance detection of arrivals. The transforms enable the generation of an image, or map, representative of the likelihood that there was a source of seismic energy occurring at a given point in time at a particular point in time.
    Type: Application
    Filed: June 21, 2013
    Publication date: June 25, 2015
    Inventors: Ali Ozbek, Anthony Probert, Daniel Gordon Raymer
  • Publication number: 20150112601
    Abstract: Seismic data processing using one or more non-linear stacking enabling detection of weak signals relative to noise levels. The non-linear stacking includes a double phase, a double phase-weighted, a real phasor, a squared real phasor, a phase and an N-th root stack. Microseismic signals as recorded by one or more seismic detectors and transformed by transforming the signal to enhance detection of arrivals. The transforms enable the generation of an image, or map, representative of the likelihood that there was a source of seismic energy occurring at a given point in time at a particular point in space, which may be used, for example, in monitoring operations such as hydraulic fracturing, fluid production, water flooding, steam flooding, gas flooding, and formation compaction.
    Type: Application
    Filed: June 21, 2013
    Publication date: April 23, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: Ali Ozbek, Julian Drew, Anthony Probert, Daniel Gordon Raymer
  • Publication number: 20150081223
    Abstract: Methods, computing systems, and computer-readable media for processing seismic data. The method may include obtaining a model of a subterranean domain, and determining one or more synthetic waveforms for one or more events located in the subterranean domain, based at least partially on the model. The method may also include identifying, using a processor, one or more arrival waves in the one or more synthetic waveforms, wherein at least one of the one or more arrivals represents a mode-converted wave, and generating a processing chain for determining at least a location of an event in the subterranean domain based at least partially on the at least one mode-converted wave.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Michael John Williams, Joel Herve Le Calvez, Tina Hoffart, Geraldine Haas, Daniel Gordon Raymer, David Pugh