Patents by Inventor Daniel Greving

Daniel Greving has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190161865
    Abstract: Methods for producing Non-Equilibrium Alloy (NEA) feedstock powders are disclosed, as are methods for fabricating articles from such NEA feedstock powders utilizing Additive Manufacturing (AM) cold spray processes. In various embodiments, the method includes the step or process obtaining an NEA feedstock powder, which is composed of an alloy matrix throughout which a first minority constituent is dispersed. The first minority constituent precipitates from the alloy matrix when the NEA feedstock powder is exposed to temperatures exceeding a critical temperature threshold (TCRITICAL) for a predetermined time period. An AM cold spray process is carried-out to produce a near-net article from the NEA feedstock powder, which is exposed to a maximum temperature (TSPRAY_MAX) during the cold spray process. The near-net article is then further processed to yield a finished article.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Paul Chipko, James Piascik, Harry Lester Kington, Daniel Greving, Patrick Hinke, Robert Franconi, Bahram Jadidian
  • Patent number: 9216453
    Abstract: Methods of forming dual microstructure components include consolidating a powder material comprising an alloy to form a billet, the billet having a first grain structure, inductively heating the billet at an inductive heat treat temperature above a gamma prime solvus temperature of the alloy and subjecting the billet to a subsolvus heat treat temperature that is below the gamma prime solvus temperature of the alloy, waiting a period of time for the first grain structure in an outer portion of the billet to transform into a second grain structure that is coarser than the first grain structure, after the steps of inductively heating and subjecting the billet to the subsolvus heat treat temperature. The methods also include dividing the billet into at least two sections, and machining a final shape into one or more of the at least two sections to form the dual microstructure component.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: December 22, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian Hann, Derek Anthony Rice, Daniel Greving
  • Publication number: 20110123385
    Abstract: Methods of forming dual microstructure components include consolidating a powder material comprising an alloy to form a billet, the billet having a first grain structure, inductively heating the billet at an inductive heat treat temperature above a gamma prime solvus temperature of the alloy and subjecting the billet to a subsolvus heat treat temperature that is below the gamma prime solvus temperature of the alloy, waiting a period of time for the first grain structure in an outer portion of the billet to transform into a second grain structure that is coarser than the first grain structure, after the steps of inductively heating and subjecting the billet to the subsolvus heat treat temperature. The methods also include dividing the billet into at least two sections, and machining a final shape into one or more of the at least two sections to form the dual microstructure component.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian Hann, Derek Anthony Rice, Daniel Greving
  • Publication number: 20100209633
    Abstract: A cylindrical test specimen is provided. The test specimen comprises a metallic sheet curved to form a cylindrical shape, an adhesive layer contacting the metallic sheet, and a thermal barrier coating coupled to the metallic sheet with the adhesive layer, the thermal barrier coating adapted to inhibit thermal transfer.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Applicant: Honeywell International Inc.
    Inventors: Daniel Greving, Brian Hann, Jack McIver, Nagaraja Rudrapatna
  • Publication number: 20070128363
    Abstract: Apparatus and compositions for a turbine disk capable of sustained operation at turbine disk rim temperatures in excess of 1300° F., wherein the turbine disk comprises a superalloy substrate, and a ductile oxidation barrier coating disposed on at least an outer portion of the turbine disk. The oxidation barrier coating may comprise a ductile metal, such as platinum, palladium, or platinum alloyed with Al, Cr, Ni, Pd, Ti, or Zr. Methods for providing an oxidation barrier-coated turbine disk are also disclosed.
    Type: Application
    Filed: December 7, 2005
    Publication date: June 7, 2007
    Inventors: Derek Rice, Andrew Hieber, Daniel Greving
  • Publication number: 20070081912
    Abstract: Methods are provided for manufacturing turbine disks each having a hub surrounded by a rim, the hub having a first microstructure and the rim having a second microstructure that is coarser than the first microstructure, the methods employing a first powder alloy having a first gamma prime solvus temperature and a second powder alloy having a second gamma prime solvus temperature that is less than the first gamma prime solvus temperature. One method includes the steps of forming an ingot from the first and second powder alloys, the ingot having an inner section having the first microstructure and an outer section having a microstructure that is less coarse than the second microstructure, and exposing the ingot to a temperature between the first and second gamma prime solvus temperatures while forming the ingot into a plurality of turbine disks to transform the microstructure of the outer section into the second microstructure.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Inventors: Brian Hann, Derek Rice, Andrew Hieber, Daniel Greving