Patents by Inventor Daniel HARANGOZO

Daniel HARANGOZO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11774706
    Abstract: The invention relates firstly to a method for determining a mechanical deviation on a displacement path of an optical zoom lens, in particular on a displacement path of an optical zoom lens of a microscope. The optical zoom lens is arranged in a beam path between an object to be recorded and an electronic image sensor. In a first method step, an optical marker is introduced into the beam path at a position of the beam path located between the object to be recorded and the optical zoom lens, such that the optical marker passes the optical zoom lens and then is depicted on an image in which a position of the optical marker is detected and determined. This is compared with a reference position of the optical marker in order to determine the mechanical deviation on the displacement path of the optical zoom lens. The invention further relates to a method for correction of a displacement error of an image recorded by an electronic image sensor and to an electronic image recording device.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: October 3, 2023
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventors: Daniel Stegmann, Daniel Harangozo, Peter Schacht, Thomas Milde
  • Publication number: 20220350107
    Abstract: The invention relates firstly to a method for determining a mechanical deviation on a displacement path of an optical zoom lens, in particular on a displacement path of an optical zoom lens of a microscope. The optical zoom lens is arranged in a beam path between an object to be recorded and an electronic image sensor. In a first method step, an optical marker is introduced into the beam path at a position of the beam path located between the object to be recorded and the optical zoom lens, such that the optical marker passes the optical zoom lens and then is depicted on an image in which a position of the optical marker is detected and determined. This is compared with a reference position of the optical marker in order to determine the mechanical deviation on the displacement path of the optical zoom lens. The invention further relates to a method for correction of a displacement error of an image recorded by an electronic image sensor and to an electronic image recording device.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 3, 2022
    Inventors: Daniel STEGMANN, Daniel HARANGOZO, Peter SCHACHT, Thomas MILDE
  • Patent number: 11385436
    Abstract: The invention relates firstly to a method for determining a mechanical deviation on a displacement path of an optical zoom lens (03), in particular on a displacement path of an optical zoom lens (03) of a microscope. The optical zoom lens (03) is arranged in a beam path (01) between an object (19) to be recorded and an electronic image sensor (04). In a first method step, an optical marker is introduced into the beam path (01) at a position of the beam path (01) located between the object (19) to be recorded and the optical zoom lens (03), such that the optical marker passes the optical zoom lens (03) and then is depicted on an image in which a position of the optical marker is detected and determined. This is compared with a reference position of the optical marker in order to determine the mechanical deviation on the displacement path of the optical zoom lens (03).
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 12, 2022
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventors: Daniel Stegmann, Daniel Harangozo, Peter Schacht, Thomas Milde
  • Publication number: 20210389578
    Abstract: The invention relates to a microscope, having: a specimen chamber for a specimen (2, 20); at least one microscope objective (1); one motor driven objective changer (32), which, for the purposes of changing a microscope objective, moves the least one microscope objective (1) through a change volume (34); a control device (20) controlling the objective changer (32); and an apparatus for applying a liquid immersion agent into a gap (6) between the microscope objective (1) and a specimen (2, 20) received in the specimen chamber, said apparatus having a jet device (4) which is designed to introduce the immersion agent in a jet (5) laterally into the gap (6), the jet device (4) having an operating position (B) for laterally introducing the immersion agent into the gap (6), in which position the jet device (4) is located in the change volume (34), the jet device (4) is coupled to a drive (28) for adjusting the location of the jet device (4), and the control device (20) is connected to and configured for control of t
    Type: Application
    Filed: October 17, 2019
    Publication date: December 16, 2021
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Johannes KNOBLICH, Daniel HARANGOZO, Hendrik HERRMANN, Robert FESSLER
  • Publication number: 20210382288
    Abstract: The invention relates to a device for applying a liquid immersion agent into a gap (6) between a microscope objective (1) and a sample (2, 20) to be examined under the microscope, wherein the device has a blasting device (4) which is designed to introduce the immersion agent laterally into the gap (6) in a jet (5), and the blasting device (4) is designed to spray the immersion agent into the gap (6) in the form of a vapor or spray mist jet (5).
    Type: Application
    Filed: October 17, 2019
    Publication date: December 9, 2021
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Johannes KNOBLICH, Daniel HARANGOZO, Hendrik HERRMANN, Robert FESSLER
  • Publication number: 20190346659
    Abstract: The invention relates firstly to a method for determining a mechanical deviation on a displacement path of an optical zoom lens (03), in particular on a displacement path of an optical zoom lens (03) of a microscope. The optical zoom lens (03) is arranged in a beam path (01) between an object (19) to be recorded and an electronic image sensor (04). In a first method step, an optical marker is introduced into the beam path (01) at a position of the beam path (01) located between the object (19) to be recorded and the optical zoom lens (03), such that the optical marker passes the optical zoom lens (03) and then is depicted on an image in which a position of the optical marker is detected and determined. This is compared with a reference position of the optical marker in order to determine the mechanical deviation on the displacement path of the optical zoom lens (03).
    Type: Application
    Filed: January 19, 2018
    Publication date: November 14, 2019
    Inventors: Daniel STEGMANN, Daniel HARANGOZO, Peter SCHACHT, Thomas MILDE