Patents by Inventor Daniel Herein

Daniel Herein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10058851
    Abstract: The present invention is concerned with the use of certain oxygen storage components. In particular, the use of special mixed oxides as oxygen storage components in exhaust catalysis is disclosed.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 28, 2018
    Assignee: UMICORE AG & CO. KG
    Inventors: Alexander Hofmann, Liesbet Jongen, Daniel Herein
  • Patent number: 10052615
    Abstract: The present invention is concerned with oxygen storage materials. In particular an oxygen storage material (OSM) is proposed which comprises a certain mixed oxide as the oxygen storage component. The oxygen storage material can be used in conventional manner in three-way catalysts or NOx-storage catalysts for example.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 21, 2018
    Assignee: UMICORE AG & CO. KG
    Inventors: Alexander Hofmann, Liesbet Jongen, Daniel Herein
  • Publication number: 20170021340
    Abstract: The present invention is concerned with the use of certain oxygen storage components. In particular, the use of special mixed oxides as oxygen storage components in exhaust catalysis is disclosed.
    Type: Application
    Filed: November 25, 2014
    Publication date: January 26, 2017
    Applicant: UMICORE AG & CO. KG
    Inventors: Alexander HOFMANN, Liesbet JONGEN, Daniel HEREIN
  • Publication number: 20170014810
    Abstract: The present invention is concerned with oxygen storage materials. In particular an oxygen storage material (OSM) is proposed which comprises a certain mixed oxide as the oxygen storage component. The oxygen storage material can be used in conventional manner in three-way catalysts or NOx-storage catalysts for example.
    Type: Application
    Filed: November 25, 2014
    Publication date: January 19, 2017
    Applicant: UMICORE AG & CO. KG
    Inventors: Alexander HOFMANN, Liesbet JONGEN, Daniel HEREIN
  • Patent number: 9548498
    Abstract: The invention relates to a carbon-free electrocatalyst for fuel cells, containing an electrically conductive substrate and a catalytically active species, wherein the conductive substrate is an inorganic, multi-component substrate material of the composition 0X1-0X2, in which 0X1 means an electrically non-conductive inorganic oxide having a specific surface area (BET) in the range of 50 to 400 mVg and 0X2 means a conductive oxide. The non-conductive inorganic oxide 0X1 is coated with the conductive oxide 0X2. The multi-component substrate preferably has a core/shell structure. The multi-component substrate material 0X1-0X2 has an electrical conductivity in the range>0.01 S/cm and is coated with catalytically active particles containing noble metal. The electrocatalysts produced therewith are used in electrochemical devices such as PEM fuel cells and exhibit high corrosion stability.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: January 17, 2017
    Assignee: UMICORE AG & CO. KG
    Inventors: Barbara Klose-Schubert, Daniel Herein, Marco Lopez, Carsten Becker
  • Patent number: 9440224
    Abstract: The present invention is directed to hollow catalyst particles comprising a layered shell structure and to a method of their manufacture. The catalyst particles have the general formula Hcore/PMinner shell/IL/PMouter shell in which Hcore is the hollow core, PMinner shell is a precious metal forming the innermost layer of the shell, IL is an intermediate layer comprising a base metal/precious metal alloy, and PMouter shell is a precious metal forming the outermost layer of the shell. The precious metal is selected from Pt, Ir and Pd and mixtures or alloys thereof, and IL is an intermediate layer comprising a base metal/precious metal alloy wherein the concentration of the base metal changes from the periphery of the hollow core to the outer surface of the intermediate layer. The base metal is selected from Co, Ni, and Cu and mixtures thereof.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 13, 2016
    Assignee: UMICORE AG & CO. KG
    Inventors: Dan V. Goia, Igor V. Sevonkaev, Daniel Herein
  • Publication number: 20140349203
    Abstract: The invention relates to a carbon-free electrocatalyst for fuel cells, containing an electrically conductive substrate and a catalytically active species, wherein the conductive substrate is an inorganic, multi-component substrate material of the composition 0X1-0X2, in which 0X1 means an electrically non-conductive inorganic oxide having a specific surface area (BET) in the range of 50 to 400 mVg and 0X2 means a conductive oxide. The non-conductive inorganic oxide 0X1 is coated with the conductive oxide 0X2. The multi-component substrate preferably has a core/shell structure. The multi-component substrate material 0X1-0X2 has an electrical conductivity in the range>0.01 S/cm and is coated with catalytically active particles containing noble metal. The electrocatalysts produced therewith are used in electrochemical devices such as PEM fuel cells and exhibit high corrosion stability.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Inventors: Barbara Klose-Schubert, Daniel Herein, Marco Lopez, Carsten Becker
  • Publication number: 20140322631
    Abstract: The invention is directed to precious metal oxide catalysts, particularly to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis and other applications. The composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with an inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 30 to 200 m2/g and is present in a quantity of 25 to 70 wt.-% based on the total weight of the catalyst. The catalyst materials are characterised by a good electrical conductivity >0.01 S/cm and high current density. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers, PEM fuel cells, regenerative fuel cells (RFC), sensors and other electrochemical devices.
    Type: Application
    Filed: December 18, 2012
    Publication date: October 30, 2014
    Inventors: Barbara Klose-Schubert, Daniel Herein, Hans-Georg Reitz
  • Patent number: 8865120
    Abstract: The present invention is directed to a process for the production of ion-exchanged (metal-doped, metal-exchanged) Zeolites and Zeotypes, In particular, the method applied uses a sublimation step to incorporate the ion within the channels of the Zeolitic material. Hence, according to this dry procedure no solvent is involved which obviates certain drawbacks connected with wet exchange processes known in the art.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 21, 2014
    Assignee: Umicore AG & Co., KG
    Inventors: Fei Wen, Barry W. L. Southward, Liesbet Jongen, Alexander Hofmann, Daniel Herein
  • Publication number: 20140171297
    Abstract: The present invention is directed to hollow catalyst particles comprising a layered shell structure and to a method of their manufacture. The catalyst particles have the general formula Hcore/PMinner shell/IL/PMouter shell in which Hcore is the hollow core, PMinner shell is a precious metal forming the innermost layer of the shell, IL is an intermediate layer comprising a base metal/precious metal alloy, and PMouter shell is a precious metal forming the outermost layer of the shell. The precious metal is selected from Pt, Ir and Pd and mixtures or alloys thereof, and IL is an intermediate layer comprising a base metal/precious metal alloy wherein the concentration of the base metal changes from the periphery of the hollow core to the outer surface of the intermediate layer. The base metal is selected from Co, Ni, and Cu and mixtures thereof.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Dan V. GOIA, Igor V. SEVONKAEV, Daniel HEREIN
  • Patent number: 8603431
    Abstract: A new process for producing a SAPO molecular sieve is disclosed wherein a mixture of a P source with an Al source is subjected to a digestion step under stirring before adding a Si source and a template. The slurry resulting after addition of all chemicals is subjected to a pH adjustment followed by the usual hydrothermal treatment at higher temperature in an autoclave. In this way, very pure highly crystalline SAPO molecular sieves such as SAPO-34 are obtained with a very high yield. In addition, the SAPOs produced this way have an exceptional activity in the dehydration reactions and can be employed as a active component of catalysts for the production of valuable dehydration products from methanol such as, but not limited to, olefins and dimethylether (DME).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 10, 2013
    Assignee: Casale Chemicals S.A.
    Inventors: Cristina Ferrini, Daniel Herein, David Linke, Uwe Rodemerck, Evgeny Kondratenko
  • Publication number: 20130251611
    Abstract: The present invention is directed to a process for the production of ion-exchanged (metal-doped, metal-exchanged) Zeolites and Zeotypes, In particular, the method applied uses a sublimation step to incorporate the ion within the channels of the Zeolitic material. Hence, according to this dry procedure no solvent is involved which obviates certain drawbacks connected with wet exchange processes known in the art.
    Type: Application
    Filed: December 8, 2011
    Publication date: September 26, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Fei Wen, Barry W.L. Southward, Liesbet Jongen, Alexander Hofmann, Daniel Herein
  • Publication number: 20100292071
    Abstract: A new process for producing a SAPO molecular sieve is disclosed wherein a mixture of a P source with an Al source is subjected to a digestion step under stirring before adding a Si source and a template. The slurry resulting after addition of all chemicals is subjected to a pH adjustment followed by the usual hydrothermal treatment at higher temperature in an autoclave. In this way, very pure highly crystalline SAPO molecular sieves such as SAPO-34 are obtained with a very high yield. In addition, the SAPOs produced this way have an exceptional activity in the dehydration reactions and can be employed as a active component of catalysts for the production of valuable dehydration products from methanol such as, but not limited to, olefins and dimethylether (DME).
    Type: Application
    Filed: June 30, 2008
    Publication date: November 18, 2010
    Applicant: CASALE CHEMICALS S.A.
    Inventors: Cristina Ferrini, Daniel Herein, David Linke, Uwe Rodemerck, Evgeny Kondratenko