Patents by Inventor Daniel Hochbaum

Daniel Hochbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10800829
    Abstract: Provided herein are variants of an archaerhodopsin useful for application such as optical measurement of membrane potential. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, cells comprising the polynucleotides, and cells comprising the polypeptides; and methods of using the variants.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: October 13, 2020
    Assignees: President and Fellows of Harvard College, The Governors of the University of Alberta
    Inventors: Adam Ezra Cohen, Daniel Hochbaum, Peng Zou, Samouil Leon Farhi, Robert Earl Campbell, Yongxin Zhao, Daniel Jed Harrison
  • Publication number: 20200123218
    Abstract: Provided herein are variants of an archaerhodopsin useful for application such as optical measurement of membrane potential. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, cells comprising the polynucleotides, and cells comprising the polypeptides; and methods of using the variants.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Applicants: President and Fellows of Harvard College, The Governors of the University of Alberta
    Inventors: Adam Ezra Cohen, Daniel Hochbaum, Peng Zou, Samouil Leon Farhi, Robert Earl Campbell, Yongxin Zhao, Daniel Jed Harrison
  • Patent number: 10457715
    Abstract: Provided herein are variants of an archaerhodopsin useful for application such as optical measurement of membrane potential. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, cells comprising the polynucleotides, and cells comprising the polypeptides; and methods of using the variants.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: October 29, 2019
    Assignees: President and Fellows of Harvard College, The Governors of the University of Alberta
    Inventors: Adam E. Cohen, Daniel Hochbaum, Peng Zou, Samouil Leon Farhi, Robert Earl Campbell, Yongxin Zhao, Daniel Jed Harrison
  • Patent number: 10161937
    Abstract: The invention provides methods for characterizing cellular physiology by incorporating into an electrically excitable cell an optical reporter of, and an optical actuator of, electrical activity. A signal is obtained from the optical reporter in response to a stimulation of the cell. Either or both of the optical reporter and actuator may be based on genetically-encoded rhodopsins incorporated into the cell. The invention provides all optical methods that may be used instead of, or as a complement to, traditional patch clamp technologies and that can provide rapid, accurate, and flexible assays of cellular physiology.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: December 25, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Adam Ezra Cohen, Joel Kralj, Adam D. Douglass, Daniel Hochbaum
  • Publication number: 20180031553
    Abstract: The invention provides methods for characterizing cellular physiology by incorporating into an electrically excitable cell an optical reporter of, and an optical actuator of, electrical activity. A signal is obtained from the optical reporter in response to a stimulation of the cell. Either or both of the optical reporter and actuator may be based on genetically-encoded rhodopsins incorporated into the cell. The invention provides all optical methods that may be used instead of, or as a complement to, traditional patch clamp technologies and that can provide rapid, accurate, and flexible assays of cellular physiology.
    Type: Application
    Filed: July 10, 2017
    Publication date: February 1, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: Adam Ezra Cohen, Joel Kralj, Adam D. Douglass, Daniel Hochbaum
  • Publication number: 20170313757
    Abstract: Provided herein are variants of an archaerhodopsin useful for application such as optical measurement of membrane potential. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, cells comprising the polynucleotides, and cells comprising the polypeptides; and methods of using the variants.
    Type: Application
    Filed: November 28, 2016
    Publication date: November 2, 2017
    Applicants: President and Fellows of Harvard College, The Governors of the University of Alberta
    Inventors: Adam E. Cohen, Daniel Hochbaum, Peng Zou, Samouil Leon Farhi, Robert Earl Campbell, Yongxin Zhao, Daniel Jed Harrison
  • Publication number: 20170292961
    Abstract: The invention relates to methods of assessing communication between cells. Methods of the invention use optical reporters of cellular electrical activity to evaluate signal propagation between cells and can be used to study an individual synapse or a complex network of interconnected cells. Aspects of the invention provide a method for characterizing signal propagation between cells. The method includes providing a first cell containing a light-generating reporter and a second cell, in which the first cell and the second cell are in communication. The second cell may contain an optical actuator of cellular electrical activity. The second cell is exposed to a stimulus and an optical signal from the first cell is detected.
    Type: Application
    Filed: October 2, 2015
    Publication date: October 12, 2017
    Inventors: Adam Cohen, Kevin C. Eggan, Joel Kralj, Daniel Hochbaum, Graham Dempsey
  • Patent number: 9702874
    Abstract: The invention provides methods for characterizing cellular physiology by incorporating into an electrically excitable cell an optical reporter of, and an optical actuator of, electrical activity. A signal is obtained from the optical reporter in response to a stimulation of the cell. Either or both of the optical reporter and actuator may be based on genetically-encoded rhodopsins incorporated into the cell. The invention provides all optical methods that may be used instead of, or as a complement to, traditional patch clamp technologies and that can provide rapid, accurate, and flexible assays of cellular physiology.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 11, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Adam E. Cohen, Joel Kralj, Adam D. Douglass, Daniel Hochbaum
  • Patent number: 9518103
    Abstract: Provided herein are variants of an archaerhodopsin useful for application such as optical measurement of membrane potential. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, cells comprising the polynucleotides, and cells comprising the polypeptides; and methods of using the variants.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: December 13, 2016
    Assignees: President and Fellows of Harvard College, The Governors of the University of Alberta
    Inventors: Adam E. Cohen, Daniel Hochbaum, Peng Zou, Samouil Leon Farhi, Robert Earl Campbell, Yongxin Zhao, Daniel Jed Harrison
  • Publication number: 20160069876
    Abstract: The invention provides methods for characterizing cellular physiology by incorporating into an electrically excitable cell an optical reporter of, and an optical actuator of, electrical activity. A signal is obtained from the optical reporter in response to a stimulation of the cell. Either or both of the optical reporter and actuator may be based on genetically-encoded rhodopsins incorporated into the cell. The invention provides all optical methods that may be used instead of, or as a complement to, traditional patch clamp technologies and that can provide rapid, accurate, and flexible assays of cellular physiology.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Applicant: President and Fellows of Harvard College
    Inventors: Adam E. Cohen, Joel Kralj, Adam D. Douglass, Daniel Hochbaum
  • Publication number: 20150369740
    Abstract: Provided herein are variants of an archaerhodopsin useful for application such as optical measurement of membrane potential. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, cells comprising the polynucleotides, and cells comprising the polypeptides; and methods of using the variants.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 24, 2015
    Applicants: President and Fellows of Harvard College, The Governors of the University of Alberta
    Inventors: Adam E. Cohen, Daniel Hochbaum, Peng Zou, Samouil Leon Farhi, Robert Earl Campbell, Yongxin Zhao, Daniel Jed Harrison
  • Patent number: 9207237
    Abstract: The invention provides methods for characterizing cellular physiology by incorporating into an electrically excitable cell an optical reporter of, and an optical actuator of, electrical activity. A signal is obtained from the optical reporter in response to a stimulation of the cell. Either or both of the optical reporter and actuator may be based on genetically-encoded rhodopsins incorporated into the cell. The invention provides all optical methods that may be used instead of, or as a complement to, traditional patch clamp technologies and that can provide rapid, accurate, and flexible assays of cellular physiology.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: December 8, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Adam E. Cohen, Joel Kralj, Adam D. Douglass, Daniel Hochbaum
  • Publication number: 20150004637
    Abstract: Various aspects of the present invention are generally directed to systems and methods for imaging at high spatial and/or temporal resolutions. In one aspect, the present invention is generally directed to an optical microscopy system and related methods adapted for high spatial and temporal resolution of dynamic processes. The system may be used in conjunction with fluorescence imaging wherein the fluorescence may be mediated by voltage-indicating proteins. In some cases, time resolutions may be enhanced by fitting predefined temporal waveforms to signal values received from an image. The system may also contain a high numerical aperture objective lens and a zoom lens located in an imaging optical path to an object region. Other aspects of the present invention are generally directed to techniques of making or using such systems, kits involving such systems, manufactured storage devices able to implement such systems or methods, and the like.
    Type: Application
    Filed: November 21, 2012
    Publication date: January 1, 2015
    Inventors: Adam E. Cohen, Dougal Maclaurin, Daniel Hochbaum, Joel Kralj
  • Publication number: 20140295413
    Abstract: The invention provides methods for characterizing cellular physiology by incorporating into an electrically excitable cell an optical reporter of, and an optical actuator of, electrical activity. A signal is obtained from the optical reporter in response to a stimulation of the cell. Either or both of the optical reporter and actuator may be based on genetically-encoded rhodopsins incorporated into the cell. The invention provides all optical methods that may be used instead of, or as a complement to, traditional patch clamp technologies and that can provide rapid, accurate, and flexible assays of cellular physiology.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Adam E. Cohen, Joel Kralj, Adam D. Douglass, Daniel Hochbaum