Patents by Inventor DANIEL IRMER

DANIEL IRMER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11895950
    Abstract: An agricultural harvester is disclosed. The agricultural harvester includes a cutting unit that has a cutting table adjustable in its cutting table length, a reel adjustable to a reel vertical position and reel longitudinal position, an inclined conveyor downstream from the cutting unit, and a driver assistance system. The driver assistance system autonomously determines, using at least one input variable, at least one machine parameter and specifies the machine parameter to the cutting unit. The machine parameter can include one or more of the cutting table length, the reel vertical position, or the reel longitudinal position. In particular, the driver assistance system may determine a harvested material throughput and a vibration coefficient describing the fluctuation in the harvested material throughput in a region lying in front of the threshing system and adapt or modify the cutting table length based on the determined vibration coefficient.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 13, 2024
    Assignee: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Joachim Baumgarten, Andreas Wilken, Dennis Neitemeier, Bastian Bormann, Sebastian Spiekermann, Daniel Irmer
  • Publication number: 20230099974
    Abstract: A driver assistance system of an agricultural harvesting machine with a harvesting header designed as a draper is disclosed. The driver assistance system comprises a memory for storing data and a computing device for processing the data saved in the memory. The draper comprises a central belt and at least one transverse conveyor belt arranged on the left side and the right side of the central belt for conveying the harvested material to the central belt. The draper forms, together with the driver assistance system, an automatic draper. The computing device operates the automatic draper as a characteristic diagram controller using the saved characteristic diagrams, with the automatic draper optimizing operating parameters of the draper and specifying the optimized operating parameters for the draper. The characteristic diagrams describe the relationship between the operating parameters and quality parameters, and a control characteristic curve is assigned to the particular characteristic diagram.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 30, 2023
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Joachim Baumgarten, Andreas Wilken, Dennis Neitemeier, Bastian Bormann, Sebastian Spiekermann, Daniel Irmer
  • Publication number: 20230099523
    Abstract: An agricultural production machine comprising a characteristic diagram control is disclosed. The characteristic diagram control comprises one or more characteristic diagrams. Each characteristic diagram is configured to optimize operating parameters of the process units of the agricultural production machine. The particular characteristic diagram is designed as an initial characteristic diagram. In the initial characteristic diagram, at least the relationship between operating parameters of a process unit and quality parameters is described by initial operating points. A control characteristic curve is associated with the particular characteristic diagram, and the control characteristic curve lies around the minimum or maximum of the particular quality parameter.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 30, 2023
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Joachim Baumgarten, Andreas Wilken, Dennis Neitemeier, Bastian Bormann, Sebastian Spiekermann, Daniel Irmer
  • Publication number: 20230099971
    Abstract: A driver assistance system of an agricultural harvesting machine with a harvesting header designed as a draper is disclosed. The driver assistance system comprises a memory for storing data and a computing device for processing the data saved in the memory. The draper comprises a central belt and at least one transverse conveyor belt arranged on the left side and the right side of the central belt for conveying the harvested material to the central belt. The draper forms, together with the driver assistance system, an automatic draper. The computing device operates the automatic draper as a characteristic diagram controller using the saved characteristic diagrams, with the automatic draper optimizing operating parameters of the draper and specifying the optimized operating parameters for the draper. The characteristic diagrams describe the relationship between the operating parameters and quality parameters, and a control characteristic curve is assigned to the particular characteristic diagram.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 30, 2023
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Joachim Baumgarten, Andreas Wilken, Dennis Neitemeier, Bastian Bormann, Sebastian Spiekermann, Daniel Irmer
  • Patent number: 11596102
    Abstract: An agricultural harvesting machine has a cutting apparatus formed as a header for cutting and picking up crop of a crop stand, an inclined conveyor downstream of the cutting apparatus and in which a temporal layer height flow is adjusted, and a driver assistance system for controlling the cutting apparatus. The driver assistance system has a computing device and a sensor arrangement with a crop sensor system for generating crop parameters of the crop stand and a layer height sensor for generating the temporal layer height flow. The computing device simultaneously generates the cutting apparatus parameters of the cutting table length, horizontal reel position and vertical reel position so as to be adapted to one another and conveys them to the cutting apparatus to implement a harvesting process strategy in ongoing harvesting operation.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 7, 2023
    Assignee: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Dennis Neitemeier, Joachim Baumgarten, Andreas Wilken, Bastian Bormann, Sebastian Spiekermann, Daniel Irmer
  • Publication number: 20230065442
    Abstract: A method for operating a self-propelled agricultural harvester with a cutting unit and a self-propelled agricultural harvester are disclosed. A driver assistance system associated with the agricultural harvester includes a memory that saves data and a computing unit for processing data saved in the memory. The driver assistance system and the cutting unit form an automated cutting unit. A harvesting process strategy is selected from a plurality of harvesting process strategies saved in the memory and at least one cutting unit parameter is selected. The at least one cutting unit parameter may be determined autonomously by the computing unit to implement the at least one selected harvesting process strategy and may be specified to the cutting unit.
    Type: Application
    Filed: August 16, 2022
    Publication date: March 2, 2023
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Sebastian Spiekermann, Daniel Irmer, Dennis Neitemeier, Bastian Bormann, Joachim Baumgarten
  • Publication number: 20210235622
    Abstract: An agricultural harvester is disclosed. The agricultural harvester includes a cutting unit that has a cutting table adjustable in its cutting table length, a reel adjustable to a reel vertical position and reel longitudinal position, an inclined conveyor downstream from the cutting unit, and a driver assistance system. The driver assistance system autonomously determines, using at least one input variable, at least one machine parameter and specifies the machine parameter to the cutting unit. The machine parameter can include one or more of the cutting table length, the reel vertical position, or the reel longitudinal position. In particular, the driver assistance system may determine a harvested material throughput and a vibration coefficient describing the fluctuation in the harvested material throughput in a region lying in front of the threshing system and adapt or modify the cutting table length based on the determined vibration coefficient.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 5, 2021
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Joachim Baumgarten, Andreas Wilken, Dennis Neitemeier, Bastian Bormann, Sebastian Spiekermann, Daniel Irmer
  • Patent number: 11002841
    Abstract: A method for the evaluation of signals of a rangefinder having at least one sensor point involves carrying out measurements cyclically, wherein the rangefinder emits a plurality of measurement points that indicate a distance from the sensor point. The rangefinder measures distances in a plurality of directions, and a horizontal angle is associated with each measurement point. The measurement points are differentiated into useful signals and interfering signals based on the distance. Measurement points with a distance below a first limiting value are identified as interfering signals, and measurement points above the first limiting value are identified as useful signals. Useful signals are associated with a first measurement area when they satisfy a predetermined condition for distance and horizontal angle. The quantity of useful signals in the first measurement area is determined, and a warning signal is emitted when the quantity of useful signals lies below a first threshold value.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: May 11, 2021
    Assignee: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: René Middelberg, Sven Carsten Belau, Daniel Irmer, Sebastian Spiekermann
  • Publication number: 20210063547
    Abstract: A method for the evaluation of signals of a rangefinder having at least one sensor point involves carrying out measurements cyclically, wherein the rangefinder emits a plurality of measurement points that indicate a distance from the sensor point. The rangefinder measures distances in a plurality of directions, and a horizontal angle is associated with each measurement point. The measurement points are differentiated into useful signals and interfering signals based on the distance. Measurement points with a distance below a first limiting value are identified as interfering signals, and measurement points above the first limiting value are identified as useful signals. Useful signals are associated with a first measurement area when they satisfy a predetermined condition for distance and horizontal angle. The quantity of useful signals in the first measurement area is determined, and a warning signal is emitted when the quantity of useful signals lies below a first threshold value.
    Type: Application
    Filed: August 21, 2020
    Publication date: March 4, 2021
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: René MIDDELBERG, Sven Carsten BELAU, Daniel IRMER, Sebastian SPIEKERMANN
  • Publication number: 20210015040
    Abstract: An agricultural harvesting machine has a cutting apparatus formed as a header for cutting and picking up crop of a crop stand, an inclined conveyor downstream of the cutting apparatus and in which a temporal layer height flow is adjusted, and a driver assistance system for controlling the cutting apparatus. The driver assistance system has a computing device and a sensor arrangement with a crop sensor system for generating crop parameters of the crop stand and a layer height sensor for generating the temporal layer height flow. The computing device simultaneously generates the cutting apparatus parameters of the cutting table length, horizontal reel position and vertical reel position so as to be adapted to one another and conveys them to the cutting apparatus to implement a harvesting process strategy in ongoing harvesting operation.
    Type: Application
    Filed: May 29, 2020
    Publication date: January 21, 2021
    Applicant: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Dennis NEITEMEIER, Joachim BAUMGARTEN, Andreas WILKEN, Bastian BORMANN, Sebastian SPIEKERMANN, Daniel IRMER
  • Patent number: 9738310
    Abstract: A steering system for an agricultural vehicle has at least one steering cylinder for changing a steering angle of the agricultural vehicle, a hydraulic main steering valve for pressurizing the at least one steering cylinder, a steering transducer for actuating the main steering valve, a steering boost for controlling an adjustment characteristic between the steering transducer and the at least one steering cylinder and a sensor system for detecting an external signal of the agricultural vehicle. The steering boost controls the adjustment characteristic on the basis of the detected external signal.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: August 22, 2017
    Assignee: CLAAS Selbstfahrende Erntemaschinen GmbH
    Inventors: Frederic Fischer, Detlev Meiners, Bastian Kriebel, Thilo Krause, Daniel Irmer, Sebastian Juette, Philipp Sundermeier
  • Publication number: 20160159391
    Abstract: A steering system for an agricultural vehicle has at least one steering cylinder for changing a steering angle of the agricultural vehicle, a hydraulic main steering valve for pressurizing the at least one steering cylinder, a steering transducer for actuating the main steering valve, a steering boost for controlling an adjustment characteristic between the steering transducer and the at least one steering cylinder and a sensor system for detecting an external signal of the agricultural vehicle. The steering boost controls the adjustment characteristic on the basis of the detected external signal.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 9, 2016
    Inventors: FREDERIC FISCHER, Detlev MEINERS, Bastian KRIEBEL, Thilo KRAUSE, Daniel IRMER, Sebastian JUETTE, Philipp SUNDERMEIER
  • Publication number: 20150012181
    Abstract: An agricultural vehicle has steerable front and rear wheels and a steering control unit for controlling a steering pole of the wheels on a basis of direction-of-travel information. The steering control unit is configured to switch between two or more steering programs that respectively implement different interrelationships between the direction-of-travel information and the steering pole. The steering control unit switches between the two or more steering programs in an event-dependent manner.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 8, 2015
    Inventors: Andreas Brunnert, DANIEL IRMER, BASTIAN BORMANN