Patents by Inventor Daniel J. Aiken

Daniel J. Aiken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10381505
    Abstract: A multijunction solar cell includes an upper first solar subcell having a first band gap, a second solar subcell having a second band gap smaller than the first band gap, and a first graded interlayer composed of (InxGa1-x)yAl1-yAs adjacent to the second solar subcell. The first graded interlayer has a third band gap greater than the second band gap subject to the constraints of having the in-plane lattice parameter greater or equal to that of the second subcell and less than or equal to that of the third subcell, wherein 0<x<1 and 0<y<1, and x and y are selected such that the band gap of the first graded interlayer remains constant throughout its thickness at 1.5 eV. A third solar subcell is adjacent to the first graded interlayer and has a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: August 13, 2019
    Assignee: SolAero Technologies Corp.
    Inventors: Pravin Patel, Arthur Cornfeld, John Spann, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken
  • Patent number: 10374112
    Abstract: A multijunction solar cell includes an upper first solar subcell, a second solar subcell adjacent to the first solar subcell, a third solar subcell adjacent to the second solar subcell, and a graded interlayer adjacent to the third solar subcell. The graded interlayer has a band gap that is greater than the band gap of the third solar subcell and is composed of a compositionally step-graded series of (InxGa1-x)yAl1-yAs layers with monotonically changing lattice constant, with x and y having respective values such that the band gap of the graded interlayer remains constant throughout its thickness, and wherein 0<x<1 and 0<y<1. A fourth solar subcell is adjacent to the graded interlayer and is lattice mismatched with respect to the third solar subcell. The graded interlayer provides a transition in lattice constant from the third solar subcell to the fourth solar subcell. A lower fifth solar subcell is adjacent to the fourth solar subcell.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: August 6, 2019
    Assignee: SolAero Technologies Corp.
    Inventors: Arthur Cornfeld, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken, John Spann
  • Publication number: 20160329454
    Abstract: A multijunction solar cell includes an upper first solar subcell having a first band gap, a second solar subcell having a second band gap smaller than the first band gap, and a first graded interlayer composed of (InxGa1-x)yAl1-yAs adjacent to the second solar subcell. The first graded interlayer has a third band gap greater than the second band gap subject to the constraints of having the in-plane lattice parameter greater or equal to that of the second subcell and less than or equal to that of the third subcell, wherein 0<x<1 and 0<y<1, and x and y are selected such that the band gap of the first graded interlayer remains constant throughout its thickness at 1.5 eV. A third solar subcell is adjacent to the first graded interlayer and has a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Pravin Patel, Arthur Cornfeld, John Spann, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken
  • Publication number: 20160190378
    Abstract: A multijunction solar cell includes an upper first solar subcell, a second solar subcell adjacent to the first solar subcell, a third solar subcell adjacent to the second solar subcell, and a graded interlayer adjacent to the third solar subcell. The graded interlayer has a band gap that is greater than the band gap of the third solar subcell and is composed of a compositionally step-graded series of (InxGa1-x)y Al1-yAs layers with monotonically changing lattice constant, with x and y having respective values such that the band gap of the graded interlayer remains constant throughout its thickness, and wherein 0<x<1 and 0<y<1. A fourth solar subcell is adjacent to the graded interlayer and is lattice mismatched with respect to the third solar subcell. The graded interlayer provides a transition in lattice constant from the third solar subcell to the fourth solar subcell. A lower fifth solar subcell is adjacent to the fourth solar subcell.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 30, 2016
    Inventors: Arthur Cornfeld, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken, John Spann
  • Patent number: 9356176
    Abstract: A multijunction solar cell having at least four solar subcells includes a first solar subcell having a first band gap. A first graded interlayer adjacent to the first solar subcell and has a second band gap greater than the first band gap and that is constant at 1.5 eV throughout the thickness of the first graded interlayer. A second solar subcell is adjacent to the first graded interlayer and has a third band gap smaller than the first band gap of the first solar subcell. The second solar subcell is lattice mismatched with respect to the first solar subcell. A second graded interlayer is adjacent to the second solar subcell and has a fourth band gap greater than the third band gap of the second solar subcell and that is constant at 1.1 eV throughout the thickness of the second graded interlayer. A third solar subcell is adjacent to the second graded interlayer and has a fifth band gap smaller than the third band gap of the second solar subcell.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: May 31, 2016
    Assignee: SolAero Technologies Corp.
    Inventors: Arthur Cornfeld, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken, John Spann
  • Publication number: 20160013348
    Abstract: A multijunction solar cell having at least four solar subcells includes a first solar subcell having a first band gap, and a first graded interlayer adjacent to the first solar subcell, wherein the first graded interlayer has a second band gap greater than the first band gap and that is constant at 1.5 eV throughout the thickness of the first graded interlayer. A second solar subcell is adjacent to the first graded interlayer, wherein the second solar subcell has a third band gap smaller than the first band gap of the first solar subcell and wherein said second solar subcell is lattice mismatched with respect to the first solar subcell. A second graded interlayer is adjacent to the second solar subcell, wherein the second graded interlayer has a fourth band gap greater than the third band gap of the second solar subcell and that is constant at 1.1 eV throughout the thickness of the second graded interlayer.
    Type: Application
    Filed: July 30, 2015
    Publication date: January 14, 2016
    Inventors: Arthur Cornfeld, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken, John Spann
  • Patent number: 9117966
    Abstract: A multijunction solar cell including an upper first solar subcell, and the base-emitter junction of the upper first solar subcell being a homojunction; a second solar subcell adjacent to said first solar subcell; a third solar subcell adjacent to said second solar subcell. A first graded interlayer is provided adjacent to said third solar subcell. A fourth solar subcell is provided adjacent to said first graded interlayer, said fourth subcell is lattice mismatched with respect to said third subcell. A second graded interlayer is provided adjacent to said fourth solar subcell; and a lower fifth solar subcell is provided adjacent to said second graded interlayer, said lower fifth subcell is lattice mismatched with respect to said fourth subcell.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 25, 2015
    Assignee: SolAero Technologies Corp.
    Inventors: Arthur Cornfeld, John Spann, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken
  • Publication number: 20120211068
    Abstract: A multijunction solar cell including an upper first solar subcell, and the base-emitter junction of the upper first solar subcell being a homojunction; a second solar subcell adjacent to said first solar subcell; a third solar subcell adjacent to said second solar subcell. A first graded interlayer is provided adjacent to said third solar subcell. A fourth solar subcell is provided adjacent to said first graded interlayer, said fourth subcell is lattice mismatched with respect to said third subcell. A second graded interlayer is provided adjacent to said fourth solar subcell; and a lower fifth solar subcell is provided adjacent to said second graded interlayer, said lower fifth subcell is lattice mismatched with respect to said fourth subcell.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 23, 2012
    Applicant: Emcore Solar Power, Inc.
    Inventors: Arthur Cornfeld, John Spann, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken
  • Patent number: 7759572
    Abstract: A multijunction solar cell including first and second solar cells on a substrate with an integral bypass diode having an intrinsic layer and operative for passing current when the multijunction solar cell is shaded. In one embodiment, a vertical sequence of solar cells are epitaxially grown on a first portion of the substrate, and the layers of the diode are epitaxially grown on a second portion of the substrate with the layers of the bypass diode being deposited subsequent to the layers of the top solar cell.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: July 20, 2010
    Assignee: Emcore Solar Power, Inc.
    Inventors: Paul R. Sharps, Daniel J. Aiken, Doug Collins, Mark A. Stan
  • Patent number: 7709287
    Abstract: A method of forming a multijunction solar cell includes providing a substrate, forming a first subcell by depositing a nucleation layer over the substrate and a buffer layer including gallium arsenide (GaAs) over the nucleation layer, forming a middle second subcell having a heterojunction base and emitter disposed over the first subcell and forming first and second tunnel junction layers between the first and second subcells. The first tunnel junction layer includes GaAs over the first subcell and the second tunnel junction layer includes aluminum gallium arsenide (AlGaAs) over the first tunnel junction layer. The method further includes forming a third subcell having a homojunction base and emitter disposed over the middle subcell.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: May 4, 2010
    Assignee: Emcore Solar Power, Inc.
    Inventors: Navid Fatemi, Daniel J. Aiken, Mark A. Stan
  • Patent number: 7592538
    Abstract: A method of making a multijunction solar cell, including first and second solar cells on a substrate with a bypass diode having an intrinsic layer and operative for passing current when the multijunction solar cell is shaded. In one embodiment, a vertical sequence of solar cells are epitaxially grown on a first portion of the substrate, and the layers of the diode are epitaxially grown on a second portion of the substrate with the layers of the bypass diode being deposited subsequent to the layers of the top solar cell.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: September 22, 2009
    Assignee: Emcore Solar Power, Inc.
    Inventors: Paul R. Sharps, Daniel J. Aiken, Doug Collins, Mark A. Stan
  • Publication number: 20090188554
    Abstract: A concentrator photovoltaic solar cell array for terrestrial use for generating electrical power from solar radiation including a multifunction III-V compound semiconductor solar cell with material composition and bandgaps to maximize absorption in the AM1.5 spectral region, and a thickness of one micron or greater so as to be able to produce in excess of 15 watts of DC power with conversion efficiency in excess of 37%. The aggregate surface area of the grid pattern covers approximately 2 to 5% of the top cell.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 30, 2009
    Applicant: Emcore Corporation
    Inventor: Daniel J. Aiken
  • Publication number: 20090188561
    Abstract: An arrangement including a concentrator lens and a photovoltaic solar cell for terrestrial use for generating electrical power from solar radiation including a multifunction III-V compound semiconductor solar cell with material composition and bandgaps to maximize absorption in the AM1.5 spectral region, and a thickness of one micron or greater so as to be able to produce in excess of 15 watts of DC power with conversion efficiency in excess of 37%. The concentration level of the lens is selected to optimize the efficiency of the solar cell.
    Type: Application
    Filed: April 18, 2008
    Publication date: July 30, 2009
    Applicant: Emcore Corporation
    Inventors: Daniel J. Aiken, Mark A. Stan, Fred Newman
  • Patent number: 7553691
    Abstract: A method and a multijunction solar device having a high band gap heterojunction middle solar cell are disclosed. In one embodiment, a triple-junction solar device includes bottom, middle, and top cells. The bottom cell has a germanium (Ge) substrate and a buffer layer, wherein the buffer layer is disposed over the Ge substrate. The middle cell contains a heterojunction structure, which further includes an emitter layer and a base layer that are disposed over the bottom cell. The top cell contains an emitter layer and a base layer disposed over the middle cell.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: June 30, 2009
    Assignee: Emcore Solar Power, Inc.
    Inventors: Navid Fatemi, Daniel J. Aiken, Mark A. Stan
  • Publication number: 20090032084
    Abstract: A concentrator photovoltaic solar cell array for terrestrial use for generating electrical power from solar radiation including a central support which is rotatable about its central longitudinal axis, a support frame carried by, and rotatable with respect to, the central support about an axis orthogonal to said central longitudinal axis, and a solar array mounted on the support frame. The solar cell array includes a plurality of Fresnel concentrator lenses and multijunction III-V compound semiconductor solar cells each producing in excess of 10 watts of DC power. An actuator is provided for rotating the central support and the support frame so that the solar cell array is maintained substantially orthogonal to the rays of the sun as the sun traverses the sky.
    Type: Application
    Filed: February 1, 2008
    Publication date: February 5, 2009
    Applicant: Emcore Corporation
    Inventors: Daniel J. Aiken, Gary Hering, Earl Fuller
  • Patent number: 7381886
    Abstract: A concentrator photovoltaic solar cell array for terrestrial use for generating electrical power from solar radiation including a central support which is rotatable about its central longitudinal axis, a support frame carried by, and rotatable with respect to, the central support about an axis orthogonal to said central longitudinal axis, and a solar array mounted on the support frame. The solar cell array includes a plurality of Fresnel concentrator lenses and multijunction III-V compound semiconductor solar cells each producing in excess of 10 watts of DC power. An actuator is provided for rotating the central support and the support frame so that the solar cell array is maintained substantially orthogonal to the rays of the sun as the sun traverses the sky.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 3, 2008
    Assignee: Emcore Corporation
    Inventors: Daniel J. Aiken, Gary Hering, Earl Fuller
  • Patent number: 7071407
    Abstract: A method and a multijunction solar device having a high band gap heterojunction middle solar cell are disclosed. In one embodiment, a triple-junction solar device includes bottom, middle, and top cells. The bottom cell has a germanium (Ge) substrate and a buffer layer, wherein the buffer layer is disposed over the Ge substrate. The middle cell contains a heterojunction structure, which further includes an emitter layer and a base layer that are disposed over the bottom cell. The top cell contains an emitter layer and a base layer disposed over the middle cell.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: July 4, 2006
    Assignee: Emcore Corporation
    Inventors: Navid Faterni, Daniel J. Aiken, Mark A. Stan
  • Patent number: 6864414
    Abstract: A solar cell having a multijunction solar cell structure with a bypass diode is disclosed. The bypass diode provides a reverse bias protection for the multijunction solar cell structure. In one embodiment, the multifunction solar cell structure includes a substrate, a bottom cell, a middle cell, a top cell, a bypass diode, a lateral conduction layer, and a shunt. The lateral conduction layer is deposited over the top cell. The bypass diode is deposited over the lateral conduction layer. One side of the shunt is connected to the substrate and another side of the shunt is connected to the lateral conduction layer. In another embodiment, the bypass diode contains an i-layer to enhance the diode performance.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: March 8, 2005
    Assignee: Emcore Corporation
    Inventors: Paul R. Sharps, Daniel J. Aiken, Doug Collins, Mark A. Stan
  • Publication number: 20040163698
    Abstract: A solar cell having a multifunction solar cell structure with a bypass diode is disclosed. The bypass diode provides a reverse bias protection for the multijunction solar cell structure. In one embodiment, the multifunction solar cell structure includes a substrate, a bottom cell, a middle cell, a top cell, a bypass diode, a lateral conduction layer, and a shunt. The lateral conduction layer is deposited over the top cell. The bypass diode is deposited over the lateral conduction layer. One side of the shunt is connected to the substrate and another side of the shunt is connected to the lateral conduction layer. In another embodiment, the bypass diode contains an i-layer to enhance the diode performance.
    Type: Application
    Filed: February 6, 2004
    Publication date: August 26, 2004
    Inventors: Paul R. Sharps, Daniel J. Aiken, Doug Collins, Mark A. Stan
  • Publication number: 20040084694
    Abstract: A method and a multijunction solar device having a high band gap heterojunction middle solar cell are disclosed. In one embodiment, a triple-junction solar device includes bottom, middle, and top cells. The bottom cell has a germanium (Ge) substrate and a buffer layer, wherein the buffer layer is disposed over the Ge substrate. The middle cell contains a heterojunction structure, which further includes an emitter layer and a base layer that are disposed over the bottom cell. The top cell contains an emitter layer and a base layer disposed over the middle cell.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Navid Fatemi, Daniel J. Aiken, Mark A. Stan