Patents by Inventor Daniel J. Branagan
Daniel J. Branagan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8097095Abstract: A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: GrantFiled: January 5, 2004Date of Patent: January 17, 2012Assignee: Battelle Energy Alliance, LLCInventor: Daniel J. Branagan
-
Publication number: 20110308670Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: January 5, 2004Publication date: December 22, 2011Inventor: Daniel J. Branagan
-
Patent number: 7785428Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: GrantFiled: January 5, 2004Date of Patent: August 31, 2010Assignee: Battelle Energy Alliance, LLCInventor: Daniel J. Branagan
-
Publication number: 20100015348Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: January 5, 2004Publication date: January 21, 2010Inventor: Daniel J. Branagan
-
Patent number: 7553382Abstract: The present invention relates to the addition of niobium to iron based glass forming alloys and iron based Cr—Mo—W containing glasses. More particularly, the present invention is related to changing the nature of crystallization resulting in glass formation that may remain stable at much higher temperatures, increasing the glass forming ability and increasing devitrified hardness of the nanocomposite structure.Type: GrantFiled: February 11, 2005Date of Patent: June 30, 2009Assignee: The NanoSteel Company, Inc.Inventors: Daniel J. Branagan, M. Craig Marshall, Brian Meacham
-
Publication number: 20080160266Abstract: The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.Type: ApplicationFiled: January 14, 2008Publication date: July 3, 2008Inventors: Daniel J. Branagan, Timothy A. Hyde, James R. Fincke
-
Patent number: 7341765Abstract: The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.Type: GrantFiled: August 13, 2004Date of Patent: March 11, 2008Assignee: Battelle Energy Alliance, LLCInventors: Daniel J. Branagan, Timothy A. Hyde, James R. Fincke
-
Publication number: 20080041502Abstract: The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.Type: ApplicationFiled: May 6, 2004Publication date: February 21, 2008Inventor: Daniel J. Branagan
-
Patent number: 7323071Abstract: The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.Type: GrantFiled: May 6, 2004Date of Patent: January 29, 2008Assignee: Battelle Energy Alliance, LLCInventor: Daniel J. Branagan
-
Patent number: 7067022Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2–7 additional elements including at lease one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a power, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: GrantFiled: January 5, 2004Date of Patent: June 27, 2006Assignee: Battelle Energy Alliance, LLCInventor: Daniel J. Branagan
-
Patent number: 6767419Abstract: The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.Type: GrantFiled: November 9, 2000Date of Patent: July 27, 2004Assignee: Bechtel BWXT Idaho, LLCInventor: Daniel J. Branagan
-
Publication number: 20040141868Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: January 5, 2004Publication date: July 22, 2004Inventor: Daniel J. Branagan
-
Publication number: 20040142197Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: January 5, 2004Publication date: July 22, 2004Inventor: Daniel J. Branagan
-
Publication number: 20040140021Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strop and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at lease one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a power, applying the powder to a surface to forma a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: January 5, 2004Publication date: July 22, 2004Inventor: Daniel J. Branagan
-
Publication number: 20040140017Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si, and P. The mixture is formed into an alloy and cooled to form a metallic having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: January 5, 2004Publication date: July 22, 2004Inventor: Daniel J. Branagan
-
Patent number: 6689234Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: GrantFiled: June 13, 2002Date of Patent: February 10, 2004Assignee: Bechtel BWXT Idaho, LLCInventor: Daniel J. Branagan
-
Publication number: 20030051781Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: June 13, 2002Publication date: March 20, 2003Inventor: Daniel J. Branagan
-
Patent number: 6258185Abstract: In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.Type: GrantFiled: May 25, 1999Date of Patent: July 10, 2001Assignee: Bechtel BWXT Idaho, LLCInventors: Daniel J. Branagan, Joseph V. Burch
-
Patent number: 6125912Abstract: A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.Type: GrantFiled: February 2, 1999Date of Patent: October 3, 2000Assignee: Bechtel BWXT Idaho, LLCInventors: Daniel J. Branagan, Galen R. Smolik
-
Patent number: 6022424Abstract: The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.Type: GrantFiled: April 7, 1997Date of Patent: February 8, 2000Assignee: Lockheed Martin Idaho Technologies CompanyInventors: Charles H. Sellers, Daniel J. Branagan, Timothy A. Hyde