Patents by Inventor Daniel J. Hahn

Daniel J. Hahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7824999
    Abstract: A CMOS device with polysilicon protection tiles is shown in FIG. 2. LOCOS regions 12.1 and 12.2 separate adjacent active regions 16.1 from 16 and 18.1 from 18, respectively. On the upper surface of the LOCOS regions 12.1, 12.2 are polysilicon tiles 14.1, 14.2, respectively. At the corner of the gate polysilicon 14.3 and the polysilicon tiles 14.1 and 14.2 are oxide spacers 60.1-60.6. The polysilicon tiles 14.1, 14.2 have silicide layers 50.1, 50.2. Other silicide layers 50.4-50.6 are on the tops of the source, drain and polysilicon gate. An insulation layer 32 covers the substrate and metal contacts 36, 34, 38 extend from the surface of the layer 32 to the silicide layers on the source, gate and drain, respectively. The polysilicon tiles are made from the same layer of polysilicon as the gate and they are formed simultaneously with the gates. The intention of the polysilicon tiles is to reduce erosion of the field oxide between closely spaced active regions.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: November 2, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Leibiger, Daniel J. Hahn
  • Patent number: 6972472
    Abstract: An emitter stack for a quasi-self-aligned bipolar (NPN or PNP) transistor is formed where two layers over the emitter of a silicon substrate are windowed in a manner to under cut the top layer thereby exposing the substrate material. The emitter polysilicon structure is then formed over the window and conformally extends into the undercut region thereby widening the emitter region and so reducing the distance between the edge of the emitter and the extrinsic base (the base link distance) and therefore reducing the total base resistance of the transistor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: December 6, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven M. Leibiger, Daniel J. Hahn, Laurence M. Szendrei
  • Patent number: 6927460
    Abstract: A structure of and a method for making an isolated NMOS transistor using standard BiCMOS processing steps and techniques. No additional masks and processing steps are needed for the isolated NMOS device relative to the standard process flow. A P-type substrate with an overlaying buried N-type layer overlaid with a buried p-type layer below a P-well is shown. An N-type region surrounds and isolates the P-well from other devices on the same wafer. N+ regions are formed in the p-well for the source and drain connections and poly or other such electrical conductors are formed on the gate, drain and source structures to make the NMOS device operational. Parasitic bipolar transistors are managed by the circuit design, current paths and biasing to ensure the parasitic bipolar transistors do not turn on.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: August 9, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven M. Leibiger, Ronald B. Hulfachor, Michael Harley-Stead, Daniel J. Hahn
  • Publication number: 20040248357
    Abstract: An emitter stack for a quasi-self-aligned bipolar (NPN or PNP) transistor is formed where two layers over the emitter of a silicon substrate are windowed in a manner to under cut the top layer thereby exposing the substrate material. The emitter polysilicon structure is then formed over the window and conformally extends into the undercut region thereby widening the emitter region and so reducing the distance between the edge of the emitter and the extrinsic base (the base link distance) and therefore reducing the total base resistance of the transistor.
    Type: Application
    Filed: July 12, 2004
    Publication date: December 9, 2004
    Inventors: Steven M. Leibiger, Daniel J. Hahn, Laurence M. Szendrei