Patents by Inventor Daniel J. Laser

Daniel J. Laser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130729
    Abstract: A system is configured to bring about anastomosis between two lumens in a patient or between two sections of a single lumen in a patient. The anastomosis system includes a first tissue-compressing element, a second tissue-compressing element, and an energy source. The energy source can be a thermal energy source or laser energy source. Tissue is interposed between the elements. Magnetic material incorporated into the tissue-compressing elements facilitates the alignment of the elements as well as compression of the interposed tissue. The energy source can deliver energy to tissue. This delivery of energy can cause local changes to the tissue that can help maintain positional stability of the implants, can bring about immediate patency of the anastomosis and can otherwise facilitate achieving desired outcomes for the patient.
    Type: Application
    Filed: July 27, 2023
    Publication date: April 25, 2024
    Applicant: MYKA LABS, INC.
    Inventors: Daniel J. LASER, John H. JERMAN, Lee SWANSTROM
  • Publication number: 20240058004
    Abstract: A system and a method are disclosed for forming an anastomosis between a first layer of tissue and a second layer of tissue of a patient's body. The system includes a first anastomosis device component and a second anastomosis device component configured to interact with the first anastomosis device component. The first anastomosis device component is configured to be delivered to a first lumen inside the patient's body. The second anastomosis device component is configured to be delivered to a second lumen inside the patient's body. The second anastomosis device includes one or more sensors configured to capture sensor data for determining an alignment of the second anastomosis device component relative to the first anastomosis device component, or for characterizing the position or orientation of the second anastomosis device component in three-dimensional space.
    Type: Application
    Filed: February 16, 2023
    Publication date: February 22, 2024
    Inventors: Colin BRAHMSTEDT, Michael HARRISON, Daniel J. LASER
  • Patent number: 11903954
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: February 20, 2024
    Assignee: APPLAUD MEDICAL, INC.
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Patent number: 11844807
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: December 19, 2023
    Assignee: Applaud Medical, Inc.
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Patent number: 11712245
    Abstract: A system is configured to bring about anastomosis between two lumens in a patient or between two sections of a single lumen in a patient. The anastomosis system includes a first tissue-compressing element, a second tissue-compressing element, and an energy source. The energy source can be a thermal energy source or laser energy source. Tissue is interposed between the elements. Magnetic material incorporated into the tissue-compressing elements facilitates the alignment of the elements as well as compression of the interposed tissue. The energy source can deliver energy to tissue. This delivery of energy can cause local changes to the tissue that can help maintain positional stability of the implants, can bring about immediate patency of the anastomosis and can otherwise facilitate achieving desired outcomes for the patient.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: August 1, 2023
    Assignee: MYKA LABS, INC.
    Inventors: Daniel J. Laser, John H. Jerman, Lee Swanstrom
  • Publication number: 20230149188
    Abstract: A dual-flange stent can have a therapeutic effect that can bring about a marked increase in patency. The dual flanges of the stent can comprise a first discrete flange component and a second discrete flange component. One or both flange components can include a magnetic element. The stent can further comprise a shaft connecting the flange components. At least one of the flanges can transition between a first configuration and a second configuration, where the first configuration is compact and the second configuration provides a large tissue-compressing surface. In one instance, the transition to the configuration with a large tissue-compressing surface can include filling a balloon with saline or another fluid. The first flange and the second flange may be drawn together to compress interposed tissue of the stricture.
    Type: Application
    Filed: November 12, 2022
    Publication date: May 18, 2023
    Inventor: Daniel J. Laser
  • Patent number: 11607222
    Abstract: A system and a method are disclosed for forming an anastomosis between a first layer of tissue and a second layer of tissue of a patient's body. The system includes a first anastomosis device component and a second anastomosis device component configured to interact with the first anastomosis device component. The first anastomosis device component is configured to be delivered to a first lumen inside the patient's body. The second anastomosis device component is configured to be delivered to a second lumen inside the patient's body. The second anastomosis device includes one or more sensors configured to capture sensor data for determining an alignment of the second anastomosis device component relative to the first anastomosis device component, or for characterizing the position or orientation of the second anastomosis device component in three-dimensional space.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: March 21, 2023
    Assignee: Myka Labs, Inc.
    Inventors: Colin Brahmstedt, Michael Harrison, Daniel J. Laser
  • Publication number: 20220395517
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Application
    Filed: August 2, 2022
    Publication date: December 15, 2022
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Publication number: 20220387458
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Application
    Filed: August 2, 2022
    Publication date: December 8, 2022
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Publication number: 20220323075
    Abstract: A system and a method are disclosed for forming an anastomosis between a first layer of tissue and a second layer of tissue of a patient's body. The system includes a first anastomosis device component and a second anastomosis device component configured to interact with the first anastomosis device component. The first anastomosis device component is configured to be delivered to a first lumen inside the patient's body. The second anastomosis device component is configured to be delivered to a second lumen inside the patient's body. The second anastomosis device includes one or more sensors configured to capture sensor data for determining an alignment of the second anastomosis device component relative to the first anastomosis device component, or for characterizing the position or orientation of the second anastomosis device component in three-dimensional space.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 13, 2022
    Inventors: Colin Brahmstedt, Michael Harrison, Daniel J. Laser
  • Publication number: 20220323076
    Abstract: A system and a method are disclosed for forming an anastomosis between a first layer of tissue and a second layer of tissue of a patient's body. The system includes a first anastomosis device component and a second anastomosis device component configured to interact with the first anastomosis device component. The first anastomosis device component is configured to be delivered to a first lumen inside the patient's body. The second anastomosis device component is configured to be delivered to a second lumen inside the patient's body. The second anastomosis device includes one or more sensors configured to capture sensor data for determining an alignment of the second anastomosis device component relative to the first anastomosis device component, or for characterizing the position or orientation of the second anastomosis device component in three-dimensional space.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 13, 2022
    Inventors: Colin Brahmstedt, Michael Harrison, Daniel J. Laser
  • Patent number: 11464792
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: October 11, 2022
    Assignee: Applaud Medical, Inc.
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Publication number: 20220117603
    Abstract: A system is configured to bring about anastomosis between two lumens in a patient or between two sections of a single lumen in a patient. The anastomosis system includes a first tissue-compressing element, a second tissue-compressing element, and an energy source. The energy source can be a thermal energy source or laser energy source. Tissue is interposed between the elements. Magnetic material incorporated into the tissue-compressing elements facilitates the alignment of the elements as well as compression of the interposed tissue. The energy source can deliver energy to tissue. This delivery of energy can cause local changes to the tissue that can help maintain positional stability of the implants, can bring about immediate patency of the anastomosis and can otherwise facilitate achieving desired outcomes for the patient.
    Type: Application
    Filed: November 19, 2021
    Publication date: April 21, 2022
    Applicant: MYKA LABS, INC.
    Inventors: Daniel J. LASER, John H. JERMAN, Lee SWANSTROM
  • Publication number: 20220000509
    Abstract: This invention relates generally to an ultrasound device configured to generate a frustum-shaped beam capable of fragmenting a plurality of biomineralizations located within a patient's body in combination with synthetic cavitation nuclei. The ultrasound device includes a transducer assembly comprising a plurality of ultrasound transducer elements, and a multi-channel amplifier circuit. Each channel of the multi-channel amplifier circuit is configured to actuate a distinct subset of the plurality of transducer elements. The multi-channel amplifier circuit is configured to operate in each of a plurality of states, each state of comprising a set of frequencies at which each channel of the multi-channel amplifier circuit is configured to actuate the distinct subset of transducer elements. The multi-channel amplifier circuit is further configured to switch between the plurality of states, thereby causing the plurality of ultrasound transducer elements to produce a frustum-shaped beam.
    Type: Application
    Filed: October 25, 2019
    Publication date: January 6, 2022
    Inventors: Daniel J. Laser, William Behnke-Parks, David Bell, Matthew Hopcroft
  • Publication number: 20210236524
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Application
    Filed: January 22, 2021
    Publication date: August 5, 2021
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Patent number: 10953023
    Abstract: The present disclosure provides phospholipid-containing compounds, pharmaceutical compositions and microspheres that exhibit high affinity for mineralized metals. The present disclosure also provides strategies for using said compounds, compositions and microspheres in the treatment of nephrolithiasis or kidney stone disease, and methods of manufacturing and preparing said compounds and compositions.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 23, 2021
    Assignee: Applaud Medical, Inc.
    Inventors: Daniel J. Laser, Alice Luong, Robert G. Miotke
  • Patent number: 7334630
    Abstract: Apparatus and methods according to the present invention utilize micropumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These micropumps are fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These micropumps also can allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the spatial and temporal characteristics of the device temperature profiles. Novel enclosed microchannel structures are also described.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: February 26, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7316543
    Abstract: An electroosmotic micropump having a plurality of thin, closely-spaced, approximately planar, transversel aligned partitions formed in or on a substrate, among which electroosmotic flow (EOF) is generated. Electrodes are located within enclosed inlet and outlet manifolds on either side of the partition array. Inlet and outlet ports enable fluid to be pumped into and through the micropump and through an external friction load or head. Insulating layer coatings on the formed substrate limit substrate leakage current during pumping operation.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 8, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Thomas W. Kenny, Juan G. Santiago, Daniel J. Laser, Chuan-Hua Chen
  • Patent number: 7185697
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 6, 2007
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7131486
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: November 7, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior Universty
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang