Patents by Inventor Daniel J. Ripin

Daniel J. Ripin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9620928
    Abstract: A laser system comprises: a seed oscillator, having a seed output; dispersive optics, operative to receive the seed output and divide the seed output into spectrally separate seed components; an array of individually addressable, phase adjustable laser amplifiers corresponding to the spectrally separate components, each laser amplifier receiving as its seed one of the spectrally separate seed components and producing one of the spectrally separate amplified components; and phase actuators controlling the individually addressable, phase adjustable laser amplifiers. A method of operating a laser system comprises: generating a seed signal; dividing the seed signal into spectrally separate component signals; amplifying the spectrally separate component signals; recombining the spectrally separate component signals into an amplified output; and controlling phases of the amplified spectrally separate component signals. Both single-pass and double-pass amplifier array versions are disclosed.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 11, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Bien Chann, Daniel J. Ripin, Tso Yee Fan, Antonio Sanchez-Rubio
  • Patent number: 8406267
    Abstract: A solid-state gain element including a thin doped region in which an optical signal propagates through the thin doped region at a large angle with respect to the normal to the thin doped region, reflects at a boundary of the thin doped region, and passes through the thin doped region again. An optical pump beam propagates through the thin doped region also at a large angle with respect to the normal to the thin doped region. In one example, the gain element and source of the pump beam are configured such that there is total internal reflection of the pump beam at the boundary of the thin doped region for a second pumping pass through the thin doped region. In another example, an elliptically symmetric laser beam is used to create a circularly symmetric gain region in the thin doped region.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: March 26, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel J Ripin, Tso Yee Fan, Anish K Goyal, John Hybl
  • Publication number: 20120014397
    Abstract: A laser system comprises: a seed oscillator, having a seed output; dispersive optics, operative to receive the seed output and divide the seed output into spectrally separate seed components; an array of individually addressable, phase adjustable laser amplifiers corresponding to the spectrally separate components, each laser amplifier receiving as its seed one of the spectrally separate seed components and producing one of the spectrally separate amplified components; and phase actuators controlling the individually addressable, phase adjustable laser amplifiers. A method of operating a laser system comprises: generating a seed signal; dividing the seed signal into spectrally separate component signals; amplifying the spectrally separate component signals; recombining the spectrally separate component signals into an amplified output; and controlling phases of the amplified spectrally separate component signals. Both single-pass and double-pass amplifier array versions are disclosed.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Bien Chann, Daniel J. Ripin, Tso Yee Fan, Antonio Sanchez-Rubio
  • Publication number: 20100215067
    Abstract: A solid-state gain element including a thin doped region in which an optical signal propagates through the thin doped region at a large angle with respect to the normal to the thin doped region, reflects at a boundary of the thin doped region, and passes through the thin doped region again. An optical pump beam propagates through the thin doped region also at a large angle with respect to the normal to the thin doped region. In one example, the gain element and source of the pump beam are configured such that there is total internal reflection of the pump beam at the boundary of the thin doped region for a second pumping pass through the thin doped region. In another example, an elliptically symmetric laser beam is used to create a circularly symmetric gain region in the thin doped region.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel J. Ripin, Tso Yee Fan, Anish K. Goyal, John Hybl
  • Patent number: 6574383
    Abstract: An input light-coupling device comprising a dielectric layer containing a pattern of dielectric contrast distributed in at least two dimensions. The pattern of dielectric contrast, which may or may not be periodic, is designed to facilitate coupling to the dielectric layer of electromagnetic radiation. The electromagnetic radiation may be propagating within a surrounding medium of lower dielectric constant than that of said dielectric layer, input at directions including normal incidence from which light cannot typically couple to the dielectric layer without the presence of the pattern of dielectric contrast. The input light may constitute an optical signal propagating in an optical fiber or in free space. Light that is in-coupled may be directed in as many directions as dictated by the symmetry of the pattern of dielectric contrast. The dielectric layer may contain output waveguides surrounding the input coupling structure.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: June 3, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexei A. Erchak, Shanhui Fan, Erich P. Ippen, John D. Joannopoulos, Leslie A. Kolodziejski, Gale S. Petrich, Daniel J. Ripin