Patents by Inventor Daniel J. Schlitz

Daniel J. Schlitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110116205
    Abstract: In one embodiment, an ion wind fan includes a wire emitter electrode held in tension and a collector electrode having a row of openings oriented along the direction of the row of openings, the openings having an elongated oval shape having a straight portion and a rounded portion. In one embodiment, the wire emitter electrode and the collector electrode are attached to an isolator so that the row of openings is substantially centered above the wire emitter electrode.
    Type: Application
    Filed: September 17, 2010
    Publication date: May 19, 2011
    Applicant: VENTIVA, INC.
    Inventor: Daniel J. SCHLITZ
  • Patent number: 7822355
    Abstract: The present invention is related to preventing dust agglomeration on a sharp electrode which is used for generating corona. According to certain aspects, the invention includes a dust shroud which decreases or prevents dust accumulation on the sharp electrodes. The dust shroud changes the gas flow path so as to reduce the amount of gas passing near the sharp electrode. An advantage of the shroud is that it prevents dust from building up on the electrodes. The shroud is a simple, passive addition to the electrostatic pump, such that the pump is otherwise able to operate normally throughout its life. In embodiments, the shroud can be used to protect a corona electrode used in heat sink applications especially in electronics cooling. It can also be used in electrostatic precipitators for cleaning dust or chemical or microbe particles from air.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: October 26, 2010
    Assignee: Ventiva, Inc.
    Inventor: Daniel J. Schlitz
  • Publication number: 20100177519
    Abstract: The present invention relates to cooling systems, and in particular to cooling systems providing forced convective gaseous flow for dissipating heat off of light-emitting diodes (LED). According to one aspect, a cooling system employs a heat sink in combination with an EHD pumping mechanism such as corona wind or micro-scale corona wind or by a temporally controlled ion-generation technique. For LEDs a channel-array structure can be employed to embody the heat sink. The EHD pumps are located at the inlet or outlet of the heat sink channels. Many advantages are achieved by the cooling system of the invention, including that the entire system can have similar or better performance than a conventional heat sink and fan system but with one-tenth the volume and weight and can operate silently. The present invention also relates to a method of fabricating a micro-channel heat sink employing EHD gas flow for use in LED cooling.
    Type: Application
    Filed: March 31, 2009
    Publication date: July 15, 2010
    Inventor: Daniel J. SCHLITZ
  • Publication number: 20090155090
    Abstract: In general, the present invention relates to methods and apparatuses that achieve high gas flow rates through the use of an electrostatic pump. According to some aspects, the present invention relates to additional, auxiliary electrodes that generate increased ion current at lower voltages, which leads to greater pumping power than a corona wind discharge. According to further aspects, the invention provides for a directional emission of the ions. This eliminates the back flow of ions and improves the electro-fluid power conversion efficiency and pumping performance. According to yet further aspects, the invention enables the electrodes to be fabricated directly on a dielectric substrate, making the system mechanically rugged and easily fabricated.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventor: Daniel J. SCHLITZ
  • Publication number: 20080199208
    Abstract: The present invention is related to preventing dust agglomeration on a sharp electrode which is used for generating corona. According to certain aspects, the invention includes a dust shroud which decreases or prevents dust accumulation on the sharp electrodes. The dust shroud changes the gas flow path so as to reduce the amount of gas passing near the sharp electrode. An advantage of the shroud is that it prevents dust from building up on the electrodes. The shroud is a simple, passive addition to the electrostatic pump, such that the pump is otherwise able to operate normally throughout its life. In embodiments, the shroud can be used to protect a corona electrode used in heat sink applications especially in electronics cooling. It can also be used in electrostatic precipitators for cleaning dust or chemical or microbe particles from air.
    Type: Application
    Filed: January 23, 2008
    Publication date: August 21, 2008
    Inventor: Daniel J. Schlitz
  • Publication number: 20080175720
    Abstract: The present invention achieves high gas flow rates through an electrostatic pump having sharp and blunt electrodes with a corona discharge taking place in the gas gap in between the electrodes. According to certain aspects, the invention comprises a specially shaped blunt electrode that is contoured to maintain a constant or approximately constant distance between the sharp (corona) electrode and the neutralizing surface of the blunt electrode. The contour provides maximum electric field enhancement at the corona electrode and minimizes the electric field at the blunt electrode. This maximizes the non-arcing operating voltage and increases the maximum power output of the corona discharge. The contour also isolates neighboring corona electrodes, preventing their electric fields from interfering with one another and making it possible to increase the density of electrodes which further increases the pumping power of the device.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 24, 2008
    Inventors: Daniel J. Schlitz, Vishal Singhal