Patents by Inventor Daniel J. Sox

Daniel J. Sox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747481
    Abstract: A 3D LIDAR obstacle avoidance system comprising a camera; a data processor; and a gimbaled laser ranging system. The gimbaled laser ranging system is bore sighted to the camera's optical axis and has its rotation axes centered on the camera focal plane (see the attached drawing). Two-dimensional information of the camera is converted to 3-dimensional information by selectively ranging scene objects of interest (i.e. moving targets). Selected object ranges are queried simply by commanding the gimbal to point to the angle in the scene represented by the object's location in the focal plane. By not sampling the entire scene, significant improvements in throughput and range are achieved. Sensor operation in inclement weather is possible by using an IR camera and a longer wavelength ranging-laser.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: September 5, 2023
    Assignee: THE BOEING COMPANY
    Inventor: Daniel J. Sox
  • Publication number: 20210318445
    Abstract: A 3D LIDAR obstacle avoidance system comprising a camera; a data processor; and a gimbaled laser ranging system. The gimbaled laser ranging system is bore sighted to the camera's optical axis and has its rotation axes centered on the camera focal plane (see the attached drawing). Two-dimensional information of the camera is converted to 3-dimensional information by selectively ranging scene objects of interest (i.e. moving targets). Selected object ranges are queried simply by commanding the gimbal to point to the angle in the scene represented by the object's location in the focal plane. By not sampling the entire scene, significant improvements in throughput and range are achieved. Sensor operation in inclement weather is possible by using an IR camera and a longer wavelength ranging-laser.
    Type: Application
    Filed: July 20, 2018
    Publication date: October 14, 2021
    Applicant: The Boeing Company
    Inventor: Daniel J. Sox
  • Patent number: 8736932
    Abstract: A system for path compensation of multiple incoherent optical beams incorporates an optical element combining a plurality of incoherent beams to an aperture by angle using carrier frequency tilt fringes. An illumination laser is employed for reflection of an illumination beam from a target. An interferometer receives a sample of the reflected illumination beam reflected from the target and provides interference fringes. A spatial light modulator receives the interference fringes and generates a real time hologram. Relay optics are employed for transmitting the combined plurality of incoherent beams to the SLM and receiving a diffraction corrected full aperture compensated combined beam for emission to the far field.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 27, 2014
    Assignee: The Boeing Company
    Inventors: Dennis M. Guthals, Daniel J. Sox, Margarita A. Carbon, Blair F. Campbell
  • Patent number: 8339694
    Abstract: A system for path compensation of multiple incoherent spectral optical beams incorporates an optical element combining a plurality of incoherent spectral beams to an aperture by angle using carrier frequency tilt fringes. An illumination laser is employed for reflection of an illumination beam from a target. An interferometer receives a sample of the reflected illumination beam reflected from the target and provides interference fringes. A spatial light modulator receives the interference fringes and generates a real time hologram. Relay optics are employed for transmitting the combined plurality of incoherent beams to the SLM and receiving a diffraction corrected full aperture compensated combined beam for emission to the far field.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: December 25, 2012
    Assignee: The Boeing Company
    Inventors: Daniel J. Sox, Dennis M. Guthals, Margarita A. Carbon, Blair F. Campbell
  • Patent number: 8320031
    Abstract: Blazing of real time holographic fringes employs an interferometer with a focal plane array (FPA) to receive interference fringes. An FPA frame is read into a fringe processor. For each row, minima are identified and a pixel value is saved and its position in the row recorded. The minima determination is repeated for each column in the row until all pixels in the row have been recorded. A blazed fringe for the single row is then created. The blazed fringe row is then transferred to a spatial light modulator (SLM). The minima determination and fringe blazing processes are repeated until all rows in the FPA array are read and transferred to the SLM. The next FPA frame is then read into the fringe processor.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 27, 2012
    Assignee: The Boeing Company
    Inventors: Daniel J. Sox, Dennis M. Guthals, Blair F. Campbell, Margarita A. Carbon
  • Patent number: 8289596
    Abstract: A system for path compensation of multiple incoherent optical beams incorporates an optical element combining a plurality of incoherent beams to an aperture by angle using carrier frequency tilt fringes. An illumination laser is employed for reflection of an illumination beam from a target. An interferometer receives a sample of the reflected illumination beam reflected from the target and provides interference fringes. A spatial light modulator receives the interference fringes and generates a real time hologram. Relay optics are employed for transmitting the combined plurality of incoherent beams to the SLM and receiving a diffraction corrected full aperture compensated combined beam for emission to the far field.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 16, 2012
    Assignee: The Boeing Company
    Inventors: Dennis M. Guthals, Daniel J. Sox, Margarita A. Carbon, Blair F. Campbell
  • Patent number: 7505138
    Abstract: A holographically, self-referenced interferometer may include a detector to detect interference fringes in a reference leg optical signal. The interferometer may also include a holographic correction device to holographically compensate the reference leg optical signal in response to the detected interference fringes.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: March 17, 2009
    Assignee: The Boeing Company
    Inventors: Dennis M. Guthals, Blair F. Campbell, Daniel J. Sox
  • Patent number: 7203210
    Abstract: A diode laser for providing a high-energy coherent light beam suitably includes an array of laser diodes, each producing a laser beamlet. The beamlets are provided to a spatial light modulator (SLM) with an array of pixels, each pixel corresponding to a portion of the light beam. The phase variation across the light beam wavefront is monitored at a detector, and a feedback signal indicative of the phase variation is provided to control electronics. The control electronics process the feedback signal to modulate a local index of refraction within one or more pixels of the SLM to reduce the variation in phase across the beam wavefront. Because phase variations across the beam wavefront are reduced, relatively large diode arrays can be formulated, thereby resulting in relatively high powered diode lasers.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: April 10, 2007
    Assignee: The Boeing Company
    Inventors: Daniel J. Sox, Jeffrey H. Hunt
  • Patent number: 5258860
    Abstract: A photosensitive element 46 absorbs at least a portion of an incident write beam 40, causing a spatially varying electric field to be applied across a layer of a ferroelectric liquid crystal (FLC) 48, thereby forming a pattern of local polarizations corresponding to the spatially varying electric field. In one embodiment, a signal beam is modulated with a phase variation characteristic of a particular aberrator. The signal beam is then combined with a substantially plane wave reference beam to form interference fringes. These interference fringes are directed as a write beam onto photosensitive layer 46, forming a hologram in FLC layer 48 which can be read optically. An incident beam of light can be diffracted by a hologram formed in the FLC layer, thereby modulating the incident beam of light with the phase variations comprising the hologram.
    Type: Grant
    Filed: August 13, 1991
    Date of Patent: November 2, 1993
    Assignee: Rockwell International Corporation
    Inventors: Kevin L. Schehrer, Daniel J. Sox, Patricia M. Noblett