Patents by Inventor Daniel J. Zierath

Daniel J. Zierath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11769729
    Abstract: Provided herein are metal structures that may include a cobalt alloy, a nickel alloy, or nickel, as well as related devices and methods. The metal structures may be formed by chemical vapor deposition (CVD), and may include trace amounts of precursor materials used during the CVD process.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Daniel J. Zierath, Michael McSwiney, Jason Farmer, Akm Shaestagir Chowdhury
  • Patent number: 11018054
    Abstract: Disclosed herein are integrated circuit (IC) interconnects, as well as related devices and methods. For example, in some embodiments, an interconnect may include a first material and a second material distributed in the first material. A concentration of the second material may be greater proximate to the top surface than proximate to the bottom surface.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Daniel J. Zierath, Flavio Griggio, John D. Brooks
  • Patent number: 10651082
    Abstract: In an example, there is disclosed a chemical compound, including a transition metal, a post-transition metal, a metalloid, and a nonmetal. By way of non-limiting example, the post-transition metal may be aluminum. The transition metal is selected from the group consisting of tungsten, tantalum, hafnium, molybdenum, niobium, zirconium, vanadium, and titanium. The metalloid may be boron or silicon. The nonmetal may be carbon or nitrogen. The compound may be used, for example, as a barrier material in an integrated circuit.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 12, 2020
    Assignee: Intel Corporation
    Inventors: Daniel J. Zierath, Jason A. Farmer, Daniel B. Bergstrom
  • Publication number: 20200013673
    Abstract: Disclosed herein are integrated circuit (IC) interconnects, as well as related devices and methods. For example, in some embodiments, an interconnect may include a first material and a second material distributed in the first material. A concentration of the second material may be greater proximate to the top surface than proximate to the bottom surface.
    Type: Application
    Filed: April 12, 2017
    Publication date: January 9, 2020
    Applicant: Intel Corporation
    Inventors: Daniel J. Zierath, Flavio Griggio, John D. Brooks
  • Publication number: 20190393156
    Abstract: Provided herein are metal structures that may include a cobalt alloy, a nickel alloy, or nickel, as well as related devices and methods. The metal structures may be formed by chemical vapor deposition (CVD), and may include trace amounts of precursor materials used during the CVD process.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 26, 2019
    Applicant: Intel Corporation
    Inventors: Daniel J. Zierath, Michael McSwiney, Jason Farmer, Akm Shaestagir Chowdhury
  • Publication number: 20190088538
    Abstract: In an example, there is disclosed a chemical compound, including a transition metal, a post-transition metal, a metalloid, and a nonmetal. By way of non-limiting example, the post-transition metal may be aluminum. The transition metal is selected from the group consisting of tungsten, tantalum, hafnium, molybdenum, niobium, zirconium, vanadium, and titanium. The metalloid may be boron or silicon. The nonmetal may be carbon or nitrogen. The compound may be used, for example, as a barrier material in an integrated circuit.
    Type: Application
    Filed: March 31, 2016
    Publication date: March 21, 2019
    Applicant: Intel Corporation
    Inventors: Daniel J. Zierath, Jason A. Farmer, Daniel B. Bergstrom
  • Patent number: 9514983
    Abstract: A metal interconnect comprising cobalt and method of forming a metal interconnect comprising cobalt are described. In an embodiment, a metal interconnect comprising cobalt includes a dielectric layer disposed on a substrate, an opening formed in the dielectric layer such that the substrate is exposed. The embodiment further includes a seed layer disposed over the substrate and a fill material comprising cobalt formed within the opening and on a surface of the seed layer.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 6, 2016
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, James S. Clarke, Tejaswi K. Indukuri, Florian Gstrein, Daniel J. Zierath
  • Publication number: 20150371949
    Abstract: Techniques are disclosed that enable interconnects, vias, metal gates, and other conductive features that can be formed through electroless material deposition techniques. In some embodiments, the techniques employ electroless fill in conjunction with high growth rate selectivity between an electroless nucleation material (ENM) and electroless suppression material (ESM) to generate bottom-up or otherwise desired fill pattern of such features. Suitable ENM may be present in the underlying or otherwise existing structure, or may be provided. The ESM is provisioned so as to prevent or otherwise inhibit nucleation at the ESM covered areas of the feature, which in turn prevents or otherwise slows down the rate of electroless growth on those areas. As such, the electroless growth rate on the ENM sites is higher than the electroless growth rate on the ESM sites.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Applicant: INTEL CORPORATION
    Inventors: Daniel J. Zierath, Shaestagir Chowdhury, Chi-Hwa Tsang
  • Patent number: 9123706
    Abstract: Techniques are disclosed that enable interconnects, vias, metal gates, and other conductive features that can be formed through electroless material deposition techniques. In some embodiments, the techniques employ electroless fill in conjunction with high growth rate selectivity between an electroless nucleation material (ENM) and electroless suppression material (ESM) to generate bottom-up or otherwise desired fill pattern of such features. Suitable ENM may be present in the underlying or otherwise existing structure, or may be provided. The ESM is provisioned so as to prevent or otherwise inhibit nucleation at the ESM covered areas of the feature, which in turn prevents or otherwise slows down the rate of electroless growth on those areas. As such, the electroless growth rate on the ENM sites is higher than the electroless growth rate on the ESM sites.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 1, 2015
    Assignee: INTEL CORPORATION
    Inventors: Daniel J. Zierath, Shaestagir Chowdhury, Chi-Hwa Tsang
  • Patent number: 8779589
    Abstract: Electrical interconnects for integrated circuits and methods of fabrication of interconnects are provided. Devices are provided comprising copper interconnects having metallic liner layers comprising silver and a second component, such as, lanthanum, titanium, tungsten, zirconium, antimony, or calcium. Methods include providing a substrate having a trench or via formed therein, forming a silver alloy layer, comprising silver and a second component selected from the group consisting of lanthanum, titanium, tungsten, zirconium, antimony, and calcium, onto surfaces of the feature, depositing a copper seed layer, and depositing copper into the feature.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 15, 2014
    Assignee: Intel Corporation
    Inventors: Harsono S. Simka, Daniel J. Zierath, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20140183738
    Abstract: A metal interconnect comprising cobalt and method of forming a metal interconnect comprising cobalt are described. In an embodiment, a metal interconnect comprising cobalt includes a dielectric layer disposed on a substrate, an opening formed in the dielectric layer such that the substrate is exposed. The embodiment further includes a seed layer disposed over the substrate and a fill material comprising cobalt formed within the opening and on a surface of the seed layer.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Christopher J. Jezewski, James S. Clarke, Tejaswi K. Indukuri, FLorian Gstrein, Daniel J. Zierath
  • Publication number: 20130270703
    Abstract: Techniques are disclosed that enable interconnects, vias, metal gates, and other conductive features that can be formed through electroless material deposition techniques. In some embodiments, the techniques employ electroless fill in conjunction with high growth rate selectivity between an electroless nucleation material (ENM) and electroless suppression material (ESM) to generate bottom-up or otherwise desired fill pattern of such features. Suitable ENM may be present in the underlying or otherwise existing structure, or may be provided. The ESM is provisioned so as to prevent or otherwise inhibit nucleation at the ESM covered areas of the feature which in turn prevents or otherwise slows down the rate of electroless growth on those areas. As such, the electroless growth rate on the ENM sites is higher than the electroless growth rate on the ESM sites.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 17, 2013
    Inventors: Daniel J. Zierath, Shaestagir Chowdhury, Chi-Hwa Tsang
  • Publication number: 20120258588
    Abstract: A device and method of forming fluoride metal barriers at an interface of a fluorinated low-K dielectric and Cu or Cu alloy interconnects is disclosed. The fluoride metal barriers may prevent interconnects from reacting with the fluorinated low-K dielectric. The method may include depositing a thin film of metal or metal alloy on the fluorinated low-K dielectric. The thin film may include a metal or metal alloying element that reacts with free fluorine and/or fluorine compounds from the fluorinated low-K dielectric to form fluoride metal barriers.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 11, 2012
    Inventors: Christopher J. Jezewski, Daniel J. Zierath, Florian Gstrein
  • Publication number: 20120153478
    Abstract: Electrical interconnects for integrated circuits and methods of fabrication of interconnects are provided. Devices are provided comprising copper interconnects having metallic liner layers comprising silver and a second component, such as, lanthanum, titanium, tungsten, zirconium, antimony, or calcium. Methods include providing a substrate having a trench or via formed therein, forming a silver alloy layer, comprising silver and a second component selected from the group consisting of lanthanum, titanium, tungsten, zirconium, antimony, and calcium, onto surfaces of the feature, depositing a copper seed layer, and depositing copper into the feature.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Inventors: Harsono S. Simka, Daniel J. Zierath, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20120153483
    Abstract: A method of forming an interconnect structure and an integrated circuit including the interconnect structure. The method includes: depositing a dielectric layer over a conductive layer; forming an opening in the dielectric layer to expose the conductive layer; forming a barrierless single-phase interconnect comprising a metal or compound having a melting point between a melting point of copper and a melting point of tungsten. Forming includes depositing a layer of metal or compound within the opening and on an upper surface of the dielectric layer Preferably, the barrierless single-phase interconnect comprises cobalt or a cobalt containing compound. Thus, an interconnect structure, including a via and associated line, is made up of a single-phase metal or compound without the use of a different material between the interconnect and the underlying dielectric, thus improving electrical performance and reliability and further simplifying the interconnect formation process.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Inventors: Rohan N. Akolkar, Florian Gstrein, Daniel J. Zierath
  • Publication number: 20100244252
    Abstract: A device and method of forming fluoride metal barriers at an interface of a fluorinated low-K dielectric and Cu or Cu alloy interconnects is disclosed. The fluoride metal barriers may prevent interconnects from reacting with the fluorinated low-K dielectric. The method may include depositing a thin film of metal or metal alloy on the fluorinated low-K dielectric. The thin film may include a metal or metal alloying element that reacts with free fluorine and/or fluorine compounds from the fluorinated low-K dielectric to form fluoride metal barriers.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Christopher J. Jezewski, Daniel J. Zierath, Florian Gstrein
  • Publication number: 20080113508
    Abstract: Disclosed are embodiments of a method of forming metal interconnects using a sacrificial layer to protect a seed layer prior to metal gap fill. The sacrificial layer can prevent oxidation of the seed layer and perhaps oxygen migration to an underlying barrier layer. Other embodiments are described and claimed.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventors: Rohan N. Akolkar, Florian Gstrein, Valery M. Dubin, Daniel J. Zierath
  • Patent number: 7371311
    Abstract: An embodiment of the invention provides a method for reducing within die thickness variations by modifying the concentration of components of a low-acid electroplating solution. For one embodiment, the leveler concentration is increased sufficiently to reduce within die thickness variations to a specified value. For one embodiment of the invention, the leveler and suppressor are increased to reduce within die thickness variations and substantially reduce a plurality of electroplating defects. In such an embodiment the combined concentration of leveler and suppressor is determined to maintain adequate gap fill.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: May 13, 2008
    Assignee: Intel Corporation
    Inventors: Daniel J Zierath, Vinay Chikarmane, Valery M Dubin
  • Patent number: 7279084
    Abstract: A method for an electroplating cell which includes providing an anode chamber with at least two concentric anodes including an inner anode and an outer anode; generating a computer generated model with a simulation computer program; and selecting at least one current ratio from the computer generated model, with the computer generated model having a plurality of current ratios from which the at least one current ratio is selected and the one current ratio being a ratio of an inner electrical current to an outer electrical current. The method further includes applying the inner electrical current to the inner anode and the outer electrical current to the outer anode and adjusting the inner and outer electrical currents to incorporate the one current ratio. The generating of the computer generated model with the simulation computer program includes using a first iterative loop to determine a potential field in the anode chamber.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: October 9, 2007
    Assignee: Intel Corporation
    Inventors: Radek P. Chalupa, Harsono Siem Simka, Sadasivan Shankar, Daniel J. Zierath, Iouri Lantassov, Terry T. Buckley, Anand Durairajan
  • Publication number: 20040245107
    Abstract: Embodiments of the invention provide methods of reducing electroplating defects by adjusting immersion conditions. For one embodiment, the immersion conditions are adjusted based upon characteristics of the substrate, including feature size. Additionally or alternatively, the immersion conditions may be adjusted based upon aspects of the electroplating process, including motion of the substrate upon immersion. Immersion conditions that may be adjusted in accordance with various embodiments of the invention include entry bias voltage/current, vertical immersion speed, and angle of immersion.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Inventors: Guangli Che, Vinay B. Chikarmane, Christopher D. Thomas, Robert I. Wu, Daniel J. Zierath