Patents by Inventor Daniel J. Zillig

Daniel J. Zillig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220387653
    Abstract: The present disclosure provides an ethylene oxide sterilization sensor and method of use. The sensor includes: at least one thermal indicator component independently selected from an electronic thermal sensor, an irreversible temperature indicator, and a heat-shrinkable film; an acid-functional porous sorbent or an acid-functional nonwoven fibrous substrate in thermal contact with the at least one thermal indicator component; and an acid having a boiling point above 120° C. and a pKa of no greater than 2.5. The acid is impregnated in or covalently attached to the porous sorbent or is covalently attached to the nonwoven fibrous substrate. The sensor includes at least one of the electronic thermal sensor, the irreversible temperature indicator, or the acid-functional nonwoven fibrous substrate.
    Type: Application
    Filed: March 30, 2022
    Publication date: December 8, 2022
    Inventors: Michael W. Kobe, Michael S. Wendland, Richard C. Webb, Michael E. Hamerly, Daniel J. O'Neal, Kelvin J. Witcher, Dawud H. Tan, Daniel J. Zillig
  • Publication number: 20220366887
    Abstract: An assembly includes an enclosure including first and second regions spaced apart along a first direction, and a plurality of spaced apart acoustic baffles arranged along a second direction different from the first direction and disposed in the enclosure between the first and second regions. The plurality of spaced apart acoustic baffles includes adjacent first and second acoustic baffles. Each of the first and second acoustic baffles include an acoustically absorptive layer disposed on a sheet having a specific airflow resistance greater than 200 MKS Rayl. The first and second acoustic baffles define a channel therebetween. At least a portion of the channel extends along a longitudinal direction making an oblique angle with the first direction.
    Type: Application
    Filed: August 28, 2020
    Publication date: November 17, 2022
    Inventors: Ronald W. Gerdes, Catherine A. Leatherdale, Thomas Herdtle, Paul A. Nielsen, Timothy J. Rowell, Liyun Ren, Daniel J. Zillig, Sachin Talwar, Eumi Pyun, Jeffrey A. Chambers, Pingfan Wu
  • Publication number: 20210292947
    Abstract: Provided are non-woven fibrous webs, methods and assemblies thereof. The non-woven fibrous web comprises a plurality of melt-blown fibers. The plurality of melt-blown fibers include a thermoplastic polymer blended with a phosphinate and/or polymeric phosphonate. The provided non-woven articles can afford a fine fiber diameter for enhanced acoustic insulation properties, dimensional stability, and superior flame-retardant properties when compared with conventional non-woven articles having similar fiber diameters.
    Type: Application
    Filed: October 15, 2019
    Publication date: September 23, 2021
    Inventors: Liyun Ren, Daniel J. Zillig, Sachin Talwar, Eumi Pyun, Jeffrey A. Chambers, Nurkan Turkdogru Gurun, Pingfan Wu, Tien T. Wu
  • Patent number: 11105018
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 31, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Publication number: 20210095405
    Abstract: Dimensionally-stable fibrous structures including ceramic-coated melt-blown nonwoven fibers made of a flame-retarding polymer and processes for producing such fire-resistant nonwoven fibrous structures. The melt-blown fibers include poly(phenylene sulfide) in an amount sufficient for the nonwoven fibrous structures to pass one or more fire-resistance test, e.g. UL 94 V0, FAR 25.853 (a), FAR 25.856 (a), and CA Title 19, without any halogenated flame-retardant additive, and have a ceramic coating. The melt-blown fibers are subjected to a controlled in-flight heat treatment at a temperature below a melting temperature of the poly(phenylene sulfide) immediately upon exiting from at least one orifice of a melt-blowing die, in order to impart dimensional stability to the fibers.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 1, 2021
    Inventors: Liyun L. Ren, Pingfan Wu, Daniel J. Zillig, Sachin Talwar, Jonathan H. Alexander, Ta-Hua Yu, Moses M. David, James A. Phipps
  • Publication number: 20200299877
    Abstract: The provided articles, assemblies, and methods use a non-woven fibrous web (50) having one or more layers (60) that are densified in situ to provide a layer that is densified relative to one or more adjacent layers, collectively within a unitary non-woven construction. The non-woven web (50) can be made from fibers having a composition and/or structure that resist shrinkage induced by polymer crystallization when subjected to high temperatures. Advantageously, the provided non-woven webs (50) can be molded to form a three-dimensional shaped article that displays dimensional stability.
    Type: Application
    Filed: September 15, 2017
    Publication date: September 24, 2020
    Inventors: Jinzhang YOU, Jonathan H. ALEXANDER, Michael R. BERRIGAN, Akira ITO, Xiaojun SU, Qinrong WU, Liyun REN, Thomas P. HANSCHEN, Daniel J. ZILLIG, Sachin TALWAR
  • Publication number: 20200071865
    Abstract: Dimensionally stable fire-resistant fibrous structures including fire-resistant melt-blown nonwoven fibers, and processes and apparatus for producing such dimensionally stable, fire-resistant nonwoven fibrous structures. The melt-blown fibers include poly(phenylene sulfide) in an amount sufficient for the nonwoven fibrous structures to pass one or more fire-resistance test selected from UL 94 V0, FAR 25.853 (a), and FAR 25.856 (a), without any halogenated flame-retardant additive in the nonwoven fibrous structure. The melt-blown fibers are subjected to a controlled in-flight heat treatment at a temperature below a melting temperature of the poly(phenylene sulfide) immediately upon exiting from at least one orifice of a melt-blowing die, in order to impart dimensional stability to the fibers.
    Type: Application
    Filed: December 29, 2017
    Publication date: March 5, 2020
    Inventors: Liyun Ren, Pingfan Wu, Daniel J. Zillig, Sachin Talwar, Jonathan H. Alexander
  • Publication number: 20190338447
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Patent number: 10400354
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: September 3, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Publication number: 20160340815
    Abstract: A composite nonwoven fabric and articles comprising the composite nonwoven fabric are provided. The composite nonwoven fabric comprises a population of meltblown fibers comprising an aliphatic polyether thermoplastic polyurethane polymer having at least about 80% (by weight) polyalkylene oxide and a population of staple fibers intermixed and entangled therewith.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 24, 2016
    Inventors: CARY A. KIPKE, JOHN J. ROGERS, DANIEL J. ZILLIG, RANDY L. CHRISTIANSEN, DANIEL E. JOHNSON
  • Publication number: 20160298266
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Application
    Filed: November 19, 2014
    Publication date: October 13, 2016
    Applicant: 3M Innovative Properties Company
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Patent number: 9382643
    Abstract: A nozzle, die, apparatus, system and method for forming a fiber population having a median diameter less than one micrometer, and nonwoven fibrous webs including a population of such sub-micrometer fibers. The nozzle includes a first conduit having a first terminal end, a second conduit positioned coaxially around the first conduit and having a second terminal end proximate the first terminal end, wherein the first and second conduit form an annular channel between the first and second conduit, and additionally wherein the first terminal end extends axially outwardly beyond the second terminal end. The die includes at least one such nozzle, and the apparatus and system include at least one such die. Methods of making nonwoven fibrous webs including a population of sub-micrometer fibers, and articles including such nonwoven fibrous webs, are also disclosed.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 5, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric M. Moore, Michael R. Berrigan, Daniel J. Zillig, William P. Klinzing, William J. Kopecky
  • Publication number: 20130310491
    Abstract: There is provided self-degrading fibers, and methods of making and methods of using such self-degrading fibers.
    Type: Application
    Filed: December 8, 2011
    Publication date: November 21, 2013
    Applicant: 3M 9NNOVATIVE PROPERTIES COMPANY
    Inventors: Michael D. Crandall, Rudolf J. Dams, Michelle M. Hewitt, Ignatius A. Kadoma, Siegmund Papp, Yong K. Wu, Daniel J. Zillig, Jay M. Jennen, Sasha B. Myers
  • Publication number: 20130011506
    Abstract: Generally, the present description relates to a feedblock and a multilayer film die for creating polymeric multilayered films. The feedblock includes a stack of many layers of thin metal plates having flow profile cutouts, to create alternating layers of polymer.
    Type: Application
    Filed: March 3, 2011
    Publication date: January 10, 2013
    Inventors: William T. Fay, Terence D. Neavin, Robert M. Biegler, William J. Kopecky, Daniel J. Zillig
  • Publication number: 20120149273
    Abstract: A nozzle, die, apparatus, system and method for forming a fiber population having a median diameter less than one micrometer, and nonwoven fibrous webs including a population of such sub-micrometer fibers. The nozzle includes a first conduit having a first terminal end, a second conduit positioned coaxially around the first conduit and having a second terminal end proximate the first terminal end, wherein the first and second conduit form an annular channel between the first and second conduit, and additionally wherein the first terminal end extends axially outwardly beyond the second terminal end. The die includes at least one such nozzle, and the apparatus and system include at least one such die. Methods of making nonwoven fibrous webs including a population of sub-micrometer fibers, and articles including such nonwoven fibrous webs, are also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: June 14, 2012
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric M. Moore, Michael R. Berrigan, Daniel J. Zillig, William P. Klinzing, William J. Kopecky
  • Publication number: 20100272994
    Abstract: Multi-component fibers comprising at least one polymer having a softening temperature up to 150° C., and another polymer having a melting point of at least 130° C. The fibers are non-fusing up to at least 110° C. The fibers are useful, for example, for flowback control in wellbores and reservoirs.
    Type: Application
    Filed: December 11, 2008
    Publication date: October 28, 2010
    Inventors: James G. Carlson, Michael R. Berrigan, Michael D. Crandall, Ignatius A. Kadoma, Yong K. Wu, Daniel J. Zillig
  • Patent number: 7773834
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber, and may include layers are selected as quarter-wavelength thickness for light having a wavelength of more than 700 nm.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 10, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Gregory L. Bluem, Robert L. Brott, Patrick R. Fleming, Joan M. Frankel, Shandon D. Hart, William J. Kopecky, Huiwen Tai, Margaret M. Vogel-Martin, Daniel J. Zillig
  • Publication number: 20090251776
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber, and may include layers are selected as quarter-wavelength thickness for light having a wavelength of more than 700 nm.
    Type: Application
    Filed: August 30, 2006
    Publication date: October 8, 2009
    Inventors: Andrew J. Ouderkirk, Gregory L. Bluem, Robert L. Brott, Patrick R. Fleming, Joan M. Frankel, Shandon D. Hart, William J. Kopecky, Huiwen Tai, Margaret M. Vogel-Martin, Daniel J. Zillig
  • Publication number: 20090236033
    Abstract: A cleaning wipe including a fiber web and a tacky material. The fiber web defines opposing surfaces and an intermediate region between the opposing surfaces. In this regard, at least one of the opposing surfaces serves as a working surface for the cleaning wipe. The tacky material is applied to the web such that a level of tacky material is greater in the intermediate region than at the working surface. In one embodiment, the amount of tacky material per area of web material is greater in the intermediate region than at either of the opposing surfaces. In another embodiment, the fiber web is a nonwoven fiber web.
    Type: Application
    Filed: June 8, 2009
    Publication date: September 24, 2009
    Inventors: Daniel J. Zillig, Gary L. Olson, Thomas E. Haskett
  • Patent number: 7560398
    Abstract: A cleaning wipe including a fiber web and a tacky material. The fiber web defines opposing surfaces and an intermediate region between the opposing surfaces. In this regard, at least one of the opposing surfaces serves as a working surface for the cleaning wipe. The tacky material is applied to the web such that a level of tacky material is greater in the intermediate region than at the working surface. In one embodiment, the amount of tacky material per area of web material is greater in the intermediate region than at either of the opposing surfaces. In another embodiment, the fiber web is a nonwoven fiber web.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: July 14, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel J. Zillig, Gary L. Olson, Thomas E. Haskett