Patents by Inventor Daniel Jacob Blumenthal

Daniel Jacob Blumenthal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9882646
    Abstract: A heat removal system for use in optical and optoelectronic devices and subassemblies is provided. The heat removal system lowers the power consumption of one or more active cooling components within the device or subassembly, such as a TEC, which is used to remove heat from heat generating components within the device or subassembly. For any particular application, the heat removal system more efficiently removes the heat from the active cooling component, by using a heat transfer assembly, such as a planar heat pipe type assembly. The heat transfer assembly employs properties like, but not limited to, phase transition change and thermal conductivity to move heat without external power. In some embodiments, the heat transfer assembly can be used to allow the active cooling component, such as a TEC to be removed, leaving the heat transfer assembly to remove the heat from the device or subassembly.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: January 30, 2018
    Assignee: OE SOLUTIONS AMERICA, INC.
    Inventor: Daniel Jacob Blumenthal
  • Patent number: 9755753
    Abstract: According to the present invention, a monolithically integrated laser 102, also referred to herein as a U-laser 102, or integrated dual optical emission laser 102, having a first optical emission 104 and a second optical emission 106 where both the first and second optical emissions 104, 106 of the monolithically integrated laser 102 are in optical communication with a modulator 108 or other device is provided. The integrated dual emission laser 102 can be formed with a light bending portion 134 in variety of configurations including a waveguide in the form of a U-shape, or total internal reflection (TIR) mirrors, curved waveguides, and free-space etched gap mirrors. The integrated dual optical emission laser 102 can also have two laser gain sections 130, 148, one on each arm of the laser 102 to control gain.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: September 5, 2017
    Assignee: OE SOLUTIONS AMERICA, INC.
    Inventor: Daniel Jacob Blumenthal
  • Publication number: 20160269119
    Abstract: A heat removal system for use in optical and optoelectronic devices and subassemblies is provided. The heat removal system lowers the power consumption of one or more active cooling components within the device or subassembly, such as a TEC, which is used to remove heat from heat generating components within the device or subassembly. For any particular application, the heat removal system more efficiently removes the heat from the active cooling component, by using a heat transfer assembly, such as a planar heat pipe type assembly. The heat transfer assembly employs properties like, but not limited to, phase transition change and thermal conductivity to move heat without external power. In some embodiments, the heat transfer assembly can be used to allow the active cooling component, such as a TEC to be removed, leaving the heat transfer assembly to remove the heat from the device or subassembly.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Applicant: OE Solutions America, Inc.
    Inventor: Daniel Jacob BLUMENTHAL
  • Patent number: 9438355
    Abstract: The present invention describes systems 1, 12 and methods for control of optical devices and communications subsystems. The control system comprises ASIC sub-modules and programmable circuitry 25 which may be integrated into a self-contained, stand-alone module. In one embodiment, the module has one or more FPGAs 25 in conjunction with RF and Digital ASICs 30, an integrated cross-connect 36 between the FPGA and digital and RF ASIC building blocks, and an integrated cross-connect 41 between the ASIC and optical circuits and supporting functions. Programmable chip control and other transmission and tuning functions, programmable transponders, and each FPGA/ASIC 25, 30 that is incorporated into a transponder form factor or a host board, can have the same or different functionalities and other parameters including but not limited to modulation format.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: September 6, 2016
    Assignee: OE SOLUTIONS AMERICA, INC
    Inventors: Daniel Jacob Blumenthal, Henrik N. Poulsen
  • Patent number: 9413521
    Abstract: An optical receiver, transmitter, transceiver or transponder for bursty, framed or continuous data. The optical receiver includes a burst mode clock recovery module that recovers the clock rapidly and with a small number of preamble or overhead bits at the front end of the data. A local clock is used for timing when the recovered clock is not available. Transitions between the recovered clock and local clock are smoothed out to avoid undesirable artifacts.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 9, 2016
    Assignee: OE SOLUTIONS AMERICA, INC.
    Inventors: Henrik N. Poulsen, Daniel Jacob Blumenthal
  • Patent number: 9385814
    Abstract: Systems and apparatus for data communications comprising a plurality of wavelength tunable submodules in an array is provided. Each submodule has a wavelength tunable laser, and each submodule comprises, as an individual unit, a self-contained wavelength locker having optical and/or optoelectronic functions. The system may be a transponder array comprising a plurality of WDM or DWDM modules. In some embodiments, the individual submodules may comprise photonic integrated wavelength tunable lasers with other optical, electrical and optoelectronic components. Each wavelength tunable submodule incorporated into the module or array can have the same or different optical wavelength and other parameters including but not limited to modulation format. By utilizing the wavelength tunable laser submodules to build a module or array, the need for individual modules dedicated to wavelength sub-bands in the array is eliminated. The same tunable module can be used to fill all the wavelengths on a transmission fiber.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: July 5, 2016
    Assignee: OE SOLUTIONS AMERICA, INC.
    Inventors: Daniel Jacob Blumenthal, Henrik N. Poulsen
  • Patent number: 9370123
    Abstract: A heat removal system for use in optical and optoelectronic devices and subassemblies is provided. The heat removal system lowers the power consumption of one or more active cooling components within the device or subassembly, such as a TEC, which is used to remove heat from heat generating components within the device or subassembly. For any particular application, the heat removal system more efficiently removes the heat from the active cooling component, by using a heat transfer assembly, such as a planar heat pipe type assembly. The heat transfer assembly employs properties like, but not limited to, phase transition change and thermal conductivity to move heat without external power. In some embodiments, the heat transfer assembly can be used to allow the active cooling component, such as a TEC to be removed, leaving the heat transfer assembly to remove the heat from the device or subassembly.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: June 14, 2016
    Assignee: OE SOLUTIONS AMERICA, INC.
    Inventor: Daniel Jacob Blumenthal
  • Publication number: 20150365177
    Abstract: The present invention describes systems 1, 12 and methods for control of optical devices and communications subsystems. The control system comprises ASIC sub-modules and programmable circuitry 25 which may be integrated into a self-contained, stand-alone module. In one embodiment, the module has one or more FPGAs 25 in conjunction with RF and Digital ASICs 30, an integrated cross-connect 36 between the FPGA and digital and RF ASIC building blocks, and an integrated cross-connect 41 between the ASIC and optical circuits and supporting functions. Programmable chip control and other transmission and tuning functions, programmable transponders, and each FPGA/ASIC 25, 30 that is incorporated into a transponder form factor or a host board, can have the same or different functionalities and other parameters including but not limited to modulation format.
    Type: Application
    Filed: July 15, 2013
    Publication date: December 17, 2015
    Inventors: Daniel Jacob Blumenthal, Henrik N. Poulsen
  • Publication number: 20150333475
    Abstract: According to the present invention, a monolithically integrated laser 102, also referred to herein as a U-laser 102, or integrated dual optical emission laser 102, having a first optical emission 104 and a second optical emission 106 where both the first and second optical emissions 104, 106 of the monolithically integrated laser 102 are in optical communication with a modulator 108 or other device is provided. The integrated dual emission laser 102 can be formed with a a light bending portion 134 in variety of configurations including a waveguide in the form of a U-shape, or total internal reflection (TIR) mirrors, curved waveguides, and free-space etched gap mirrors. The integrated dual optical emission laser 102 can also have two laser gain sections 130, 148, one on each arm of the laser 102 to control gain.
    Type: Application
    Filed: January 2, 2014
    Publication date: November 19, 2015
    Inventor: Daniel Jacob Blumenthal
  • Publication number: 20140147130
    Abstract: An optical receiver, transmitter, transceiver or transponder for bursty, framed or continuous data. The optical receiver includes a burst mode clock recovery module that recovers the clock rapidly and with a small number of preamble or overhead bits at the front end of the data. A local clock is used for timing when the recovered clock is not available. Transitions between the recovered clock and local clock are smoothed out to avoid undesirable artifacts.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Inventors: Henrik N. Poulsen, Daniel Jacob Blumenthal
  • Publication number: 20130308951
    Abstract: Systems and apparatus for data communications comprising a plurality of wavelength tunable submodules in an array is provided. Each submodule has a wavelength tunable laser, and each submodule comprises, as an individual unit, a self-contained wavelength locker having optical and/or optoelectronic functions. The system may be a transponder array comprising a plurality of WDM or DWDM modules. In some embodiments, the individual submodules may comprise photonic integrated wavelength tunable lasers with other optical, electrical and optoelectronic components. Each wavelength tunable submodule incorporated into the module or array can have the same or different optical wavelength and other parameters including but not limited to modulation format. By utilizing the wavelength tunable laser submodules to build a module or array, the need for individual modules dedicated to wavelength sub-bands in the array is eliminated. The same tunable module can be used to fill all the wavelengths on a transmission fiber.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 21, 2013
    Inventors: Daniel Jacob Blumenthal, Henrik N. Poulsen
  • Publication number: 20130279115
    Abstract: A heat removal system for use in optical and optoelectronic devices and subassemblies is provided. The heat removal system lowers the power consumption of one or more active cooling components within the device or subassembly, such as a TEC, which is used to remove heat from heat generating components within the device or subassembly. For any particular application, the heat removal system more efficiently removes the heat from the active cooling component, by using a heat transfer assembly, such as a planar heat pipe type assembly. The heat transfer assembly employs properties like, but not limited to, phase transition change and thermal conductivity to move heat without external power. In some embodiments, the heat transfer assembly can be used to allow the active cooling component, such as a TEC to be removed, leaving the heat transfer assembly to remove the heat from the device or subassembly.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: Packet Photonics, Inc.
    Inventor: Daniel Jacob Blumenthal
  • Patent number: 6792177
    Abstract: The invention provides an optical switch comprising a housing, an input optical fiber, a mirror substrate, an input pivoting mirror, an output optical fiber, a first optical splitter, and a first optical detector. The input optical fiber propagates a light beam and is secured to the housing. The mirror substrate is secured to the housing. The input pivoting mirror is located in a path of the light beam after leaving the input optical fiber. The input pivoting mirror is pivotally secured to the mirror substrate. Pivoting of the mirror relative to the mirror substrate alters an angle with which the light beam is reflected therefrom. The output optical fiber is secured to the housing and has an end through which the light beam enters after being reflected by the input pivoting mirror. The first optical splitter is located in a path of the light beam after leaving the input optical fiber. The first optical splitter splits the light beam into a first propagated portion and a first monitoring portion.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: September 14, 2004
    Assignee: Calient Networks, Inc.
    Inventors: David Edward Welsh, Roger Jonathan Helkey, Adrian Keating, Daniel Jacob Blumenthal, Walter Joseph Fant
  • Publication number: 20020126949
    Abstract: The invention provides an optical switch comprising a housing, an input optical fiber, a mirror substrate, an input pivoting mirror, an output optical fiber, a first optical splitter, and a first optical detector. The input optical fiber propagates a light beam and is secured to the housing. The mirror substrate is secured to the housing. The input pivoting mirror is located in a path of the light beam after leaving the input optical fiber. The input pivoting mirror is pivotally secured to the mirror substrate. Pivoting of the mirror relative to the mirror substrate alters an angle with which the light beam is reflected therefrom. The output optical fiber is secured to the housing and has an end through which the light beam enters after being reflected by the input pivoting mirror. The first optical splitter is located in a path of the light beam after leaving the input optical fiber. The first optical splitter splits the light beam into a first propagated portion and a first monitoring portion.
    Type: Application
    Filed: March 12, 2001
    Publication date: September 12, 2002
    Inventors: David Edward Welsh, Roger Jonathan Helkey, Adrian Keating, Daniel Jacob Blumenthal, Walter Joseph Fant