Patents by Inventor Daniel James Farrell

Daniel James Farrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885610
    Abstract: A method for determining the thickness of a plurality of coating layers. The method comprises the steps of performing a calibration analysis on calibration data to determine initial values and search limits of optical parameters of the plurality of coating layers, irradiating the plurality of layers with a pulse of THz radiation in the range from 0.01 THz to 10 THz, detecting the reflected radiation to produce a sample response derived from the reflected radiation, producing a synthesized waveform using the optical parameters and predetermined initial thicknesses of the layers, varying the thicknesses and the optical parameters within the search limits to minimize the error measured between the sample response and the synthesized waveform, and outputting the thicknesses of the layers.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: January 30, 2024
    Assignee: TeraView Limited
    Inventors: Ian Stephen Gregory, Robert May, Daniel James Farrell
  • Publication number: 20210310796
    Abstract: A method for determining the thickness of a plurality of coating layers. The method comprises the steps of performing a calibration analysis on calibration data to determine initial values and search limits of optical parameters of the plurality of coating layers, irradiating the plurality of layers with a pulse of THz radiation in the range from 0.01 THz to 10 THz, detecting the reflected radiation to produce a sample response derived from the reflected radiation, producing a synthesized waveform using the optical parameters and predetermined initial thicknesses of the layers, varying the thicknesses and the optical parameters within the search limits to minimize the error measured between the sample response and the synthesized waveform, and outputting the thicknesses of the layers.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Ian Stephen Gregory, Robert May, Daniel James Farrell
  • Patent number: 11085755
    Abstract: A method for determining the thickness of a plurality of coating layers, the method comprising: performing a calibration analysis on calibration data to determine initial values and search limits of optical parameters of said plurality of coating layers, irradiating the said plurality of layers with a pulse of THz radiation, said pulse comprising a plurality of frequencies in the range from 0.01 THz to 10 THz; detecting the reflected radiation to produce a sample response said sample response being derived from the reflected radiation; producing a synthesised waveform using the optical parameters and predetermined initial thicknesses of said layers; and varying said thicknesses and varying said optical parameters within the said search limits to minimise the error measured between the sample response and the synthesised waveform; and outputting the thicknesses of the layers.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: August 10, 2021
    Assignee: TeraView Limited
    Inventors: Ian Stephen Gregory, Robert May, Daniel James Farrell
  • Patent number: 9795542
    Abstract: A photoelectric conversion device includes: a wavelength converting region that absorbs ambient light to generate electrons and holes, and recombines the generated electrons and holes to generate monochromatic light; and a photoelectric conversion region that has a p-n junction or p-i-n junction, absorbs the monochromatic light generated in the wavelength converting region to generate electrons and holes, and separates and moves the electrons and holes generated by absorption of the monochromatic light. The wavelength converting region includes: a carrier generating region that generates the electrons and holes; a light emitting region that generates the monochromatic light; and a carrier selective transfer region that is disposed between the carrier generating region and the light emitting region and that, of the electrons and holes generated in the carrier generating region, moves those electrons and holes having specific energies difference there between to the light emitting region.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: October 24, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomonori Nagashima, Yasuhiko Takeda, Nicholas John Ekins-Daukes, Daniel James Farrell
  • Publication number: 20140224305
    Abstract: A photoelectric conversion device includes: a wavelength converting region that absorbs ambient light to generate electrons and holes, and recombines the generated electrons and holes to generate monochromatic light; and a photoelectric conversion region that has a p-n junction or p-i-n junction, absorbs the monochromatic light generated in the wavelength converting region to generate electrons and holes, and separates and moves the electrons and holes generated by absorption of the monochromatic light. The wavelength converting region includes: a carrier generating region that generates the electrons and holes; a light emitting region that generates the monochromatic light; and a carrier selective transfer region that is disposed between the carrier generating region and the light emitting region and that, of the electrons and holes generated in the carrier generating region, moves those electrons and holes having specific energies difference there between to the light emitting region.
    Type: Application
    Filed: July 6, 2012
    Publication date: August 14, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomonori Nagashima, Yasuhiko Takeda, Nicholas John Ekins-Daukes, Daniel James Farrell