Patents by Inventor Daniel Johannes KOWALEWSKI

Daniel Johannes KOWALEWSKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11667685
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: June 6, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 11655281
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: May 23, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Gisela Schimmack, Michael Roemer
  • Patent number: 11655280
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: May 23, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Gisela Schimmack, Michael Roemer
  • Patent number: 11629177
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: April 18, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 11603397
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: March 14, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Gisela Schimmack, Michael Roemer
  • Patent number: 11576955
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: February 14, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20230023408
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 26, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230024554
    Abstract: The present invention relates to a method of characterizing the binding characteristics between a peptide of interest and MHC molecules of a given cell type, the method comprising the steps of: (i) Providing two or more cells characterized by displaying, on their surface, MHC molecules, (ii) dispensing the two or more cells in two or more vessels, so that each vessel comprises one or more cells, (iii) adding, to the different vessels, different variants of a peptide of interest, wherein the variants of said peptide are labeled and have the same amino acid sequence, yet differ from one another in the type of labeling and their concentration, and exposing the cells thereto so as to form, in the different vessels, peptide-MHC complexes on the surface of the cells, (iv) isolating the thus formed peptide-MHC complexes and (v) determining the concentration of the different peptide-MHC complexes formed (FIG. 1).
    Type: Application
    Filed: June 23, 2022
    Publication date: January 26, 2023
    Inventors: Christoph SCHRAEDER, Heiko SCHUSTER, Lena Katharina FREUDENMANN, Valentina GOLDFINGER, Daniel Johannes KOWALEWSKI, Sara YOUSEF, Timo MANZ, Vedrana MIJOSEK, Michael ROEMER, Toni WEINSCHENK
  • Patent number: 11560405
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: January 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 11559550
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: January 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 11554164
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: January 17, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20230012265
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 12, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230002462
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: August 12, 2022
    Publication date: January 5, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230002463
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: August 26, 2022
    Publication date: January 5, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20230002464
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: September 2, 2022
    Publication date: January 5, 2023
    Inventors: Colette SONG, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Patent number: 11542303
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: January 3, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Publication number: 20220372104
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 3, 2022
    Publication date: November 24, 2022
    Inventors: Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH, Gisela SCHIMMACK, Michael ROEMER
  • Publication number: 20220370583
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 24, 2022
    Inventors: Colette SONG, Linus BACKERT, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH
  • Publication number: 20220362302
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 17, 2022
    Publication date: November 17, 2022
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20220362364
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Colette SONG, Linus BACKERT, Heiko SCHUSTER, Daniel Johannes KOWALEWSKI, Oliver SCHOOR, Jens FRITSCHE, Toni WEINSCHENK, Harpreet SINGH