Patents by Inventor DANIEL JOHN VALENTINO

DANIEL JOHN VALENTINO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180128926
    Abstract: A low-power wireless ionizing radiation measurement system is present that is intended to be used in a wearable dosimeter for occupational radiation monitoring. The detector element is a custom MOS capacitor that traps holes in proportion to the amount of ionizing radiation incident upon the detector, thus permanently causing a lateral shift in the CV-curve (toward more negative threshold voltage). The circuit measures the capacitance value of several redundant sensors at a given voltage in the depletion region, records this value over time and occasionally transmits the stored values to a base station. From the change in capacitance, the dose that has been delivered can be determined.
    Type: Application
    Filed: January 5, 2018
    Publication date: May 10, 2018
    Inventors: Sean M. Scott, Daniel John Valentino, P. Alexander Walerow, Mark Raymond Salasky, Dimitrios Peroulis
  • Patent number: 9927531
    Abstract: A method and apparatus is disclosed for differentially altering the radiation response across multiple MOSCAP sensors by placing different thin gate materials with different atomic numbers on a series of MOS-based radiation sensors. The secondary electrons created in high-atomic weight materials (such as gold) at lower incident photon energy levels enable a tissue equivalent radiation response and radiations source identification/differentiation. This is a desirable alternative to using filters with different coefficients across a series of MOSCAP radiation sensor which will attenuate the signal and degrade the device form factor. The method and apparatus disclosed achieves the same functionality but with inherent gain instead of attenuation, thus increasing sensitivity. This will improve the minimum resolvable dose for x-rays and low-energy gammas (high-energy gammas will remain the same), and produces a response that can distinguish the energy level of incident radiation photon.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 27, 2018
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Mark Raymond Salasky, Sean M. Scott, P. Alexander Walerow, Daniel John Valentino, Dimitrios Peroulis
  • Patent number: 9823358
    Abstract: A low-power wireless ionizing radiation measurement system is provided that is intended to be used in a wearable dosimeter for occupational radiation monitoring.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: November 21, 2017
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Sean M. Scott, P. Alexander Walerow, Daniel John Valentino
  • Publication number: 20160187493
    Abstract: A method and apparatus is disclosed for differentially altering the radiation response across multiple MOSCAP sensors by placing different thin gate materials with different atomic numbers on a series of MOS-based radiation sensors. The secondary electrons created in high-atomic weight materials (such as gold) at lower incident photon energy levels enable a tissue equivalent radiation response and radiations source identification/differentiation. This is a desirable alternative to using filters with different coefficients across a series of MOSCAP radiation sensor which will attenuate the signal and degrade the device form factor. The method and apparatus disclosed achieves the same functionality but with inherent gain instead of attenuation, thus increasing sensitivity. This will improve the minimum resolvable dose for x-rays and low-energy gammas (high-energy gammas will remain the same), and produces a response that can distinguish the energy level of incident radiation photon.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: MARK RAYMOND SALASKY, SEAN M. SCOTT, P. ALEXANDER WALEROW, DANIEL JOHN VALENTINO, DIMITRIOS PEROULIS
  • Publication number: 20160187492
    Abstract: A low-power wireless ionizing radiation measurement system is present that is intended to be used in a wearable dosimeter for occupational radiation monitoring. An apparatus is provided comprising a switching interface, wherein the switching interface alternates between a first switching state and a second switching state. In the first switching state, a radiation-sensitive metal oxide semiconductor capacitor (MOSCAP) is coupled to an external biasing source. In the second switching state, the radiation-sensitive MOSCAP is coupled with reversed polarity relative to the first switching state to a capacitive readout circuit to thereby allow for high-resolution real-time electronic measurement of a radiation-induced capacitance response.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: Nithin RAGHUNATHAN, Sean M. SCOTT, Dimitrios PEROULIS, Harikrishna RAJABATHER, P. Alexander WALEROW, Daniel John VALENTINO
  • Publication number: 20160187494
    Abstract: A low-power wireless ionizing radiation measurement system is provided that is intended to be used in a wearable dosimeter for occupational radiation monitoring.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: SEAN M. SCOTT, P. ALEXANDER WALEROW, DANIEL JOHN VALENTINO
  • Publication number: 20160187491
    Abstract: A low-power wireless ionizing radiation measurement system is present that is intended to be used in a wearable dosimeter for occupational radiation monitoring. The detector element is a custom MOS capacitor that traps holes in proportion to the amount of ionizing radiation incident upon the detector, thus permanently causing a lateral shift in the CV-curve (toward more negative threshold voltage). The circuit measures the capacitance value of several redundant sensors at a given voltage in the depletion region, records this value over time and occasionally transmits the stored values to a base station. From the change in capacitance, the dose that has been delivered can be determined.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: SEAN M. SCOTT, DANIEL JOHN VALENTINO, P. ALEXANDER WALEROW, MARK RAYMOND SALASKY, DIMITRIOS PEROULIS