Patents by Inventor Daniel John Williams

Daniel John Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230139746
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Application
    Filed: December 6, 2022
    Publication date: May 4, 2023
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Patent number: 11553582
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: January 10, 2023
    Assignee: ASML Netherlands, B.V.
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Publication number: 20220260756
    Abstract: Provided is an optical element for a lithographic apparatus. The optical element includes a capping layer that includes oxygen vacancies therein. The oxygen vacancies prevent attack of the capping layer by preventing hydrogen and other species from penetrating the capping layer and underlying layers. The capping layer provides a low hydrogen recombination rate enabling hydrogen to clean the surface of the optical element. The capping layer may include an alloyed metal, a mixed metal oxide or a doped metal oxide and it may be a ruthenium capping layer that includes one or more dopants therein.
    Type: Application
    Filed: June 26, 2020
    Publication date: August 18, 2022
    Inventors: Yue Ma, Marcus Adrianus Van De Kerkhof, Qiushi Zhu, Klaus Martin Hummler, Peter Matthew Mayer, Kay Hoffmann, Andrew David LaForge, Igor Vladimirovich Fomenkov, Daniel John William Brown
  • Publication number: 20200305263
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Application
    Filed: April 6, 2020
    Publication date: September 24, 2020
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Patent number: 10667377
    Abstract: A target material is provided at a target location, the target material including a material that emits extreme ultraviolet light when converted to plasma, and the target material extending in a first extent along a first direction and in a second extent along a second direction; an amplified light beam is directed along a direction of propagation toward the target location; and the amplified light beam is focused in a focal plane, where the target location is outside of the focal plane and an interaction between the amplified light beam and the target material converts at least part of the target material to plasma that emits EUV light.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 26, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Robert Jay Rafac, Richard L. Sandstrom, Daniel John William Brown, Kai-Chung Hou
  • Patent number: 10663866
    Abstract: An optical source for an extreme ultraviolet (EUV) photolithography tool includes a light-generation system including a light-generation module; an optical amplifier including a gain medium associated with a gain band, the gain medium configured to amplify light having a wavelength in the gain band; and a wavelength-based optical filter system on a beam path between the light-generation module and the optical amplifier, the wavelength-based optical filter system including at least one optical element configured to allow light having a wavelength in a first set of wavelengths to propagate on the beam path and to remove light having a wavelength in a second set of wavelengths from the beam path, the first set of wavelengths and the second set of wavelengths including different wavelengths in the gain band of the optical amplifier.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: May 26, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Alexander Anthony Schafgans, Igor Vladimirovich Fomenkov, Yezheng Tao, Rostislav Rokitski, Robert Jay Rafac, Daniel John William Brown, Cory Alan Stinson
  • Patent number: 10645789
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: May 5, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Publication number: 20180081280
    Abstract: An optical source for an extreme ultraviolet (EUV) photolithography tool includes a light-generation system including a light-generation module; an optical amplifier including a gain medium associated with a gain band, the gain medium configured to amplify light having a wavelength in the gain band; and a wavelength-based optical filter system on a beam path between the light-generation module and the optical amplifier, the wavelength-based optical filter system including at least one optical element configured to allow light having a wavelength in a first set of wavelengths to propagate on the beam path and to remove light having a wavelength in a second set of wavelengths from the beam path, the first set of wavelengths and the second set of wavelengths including different wavelengths in the gain band of the optical amplifier.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventors: Alexander Anthony Schafgans, Igor Vladimirovich Fomenkov, Yezheng Tao, Rostislav Rokitski, Robert Jay Rafac, Daniel John William Brown, Cory Alan Stinson
  • Patent number: 9914654
    Abstract: In the drinking water industry, pilot plants have played a big role in assisting water professionals, utilities, and engineering firms in generating information about the behavior of large full scale systems. Due to the identification of new contaminants, stringent regulations, and demand for improved water quality the demand for novel water treatment challenges across North America have significantly increased. A portable evaluation pilot skid (PEPS) accommodates all water qualities. A vent valve screen is mounted inside the contactor with holes large enough to prevent clogging. Air is introduced into the contactor prior to the screen. The screen is mounted such that it breaks the air into small bubbles creating the effect of a stone diffusor. Air flow is easily adjusted with a needle valve.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: March 13, 2018
    Assignee: U.S. Environmental Protection Agency
    Inventor: Daniel John Williams
  • Publication number: 20180063935
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Patent number: 9832855
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: November 28, 2017
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Publication number: 20170099721
    Abstract: An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 6, 2017
    Inventors: Yezheng Tao, Daniel John William Brown, Alexander Anthony Schafgans, Palash Parijat Das
  • Patent number: 9530334
    Abstract: A physically-discrete sign component comprises an internally-electrically-illuminated alphabetic character having a front-facing profile and at least one connecting bar disposed at least substantially horizontally with respect to the front-facing profile of the alphabetic character and at least partially within the front-facing profile of that alphabetic character. By one approach the physically-discrete sign component includes two of the connecting bars. If desired, these two connecting bars are disposed at least substantially parallel to one another. By one approach, a first one of the connecting bars extends partially, but not wholly, above an upper periphery of the aforementioned front-facing profile while the second connecting bar extends partially, but not wholly, below a lower periphery of the front-facing profile. The connecting bars can include a connecting-bar interface configured to physically and electrically interconnect to an adjacent sign component.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: December 27, 2016
    Assignee: iLight Technologies, Inc.
    Inventors: Sean Edward Callahan, James Cuppini, Mark Joseph Cleaver, Timothy Edward Canzano, Edward Wayted Chen, Elizabeth Marie Randgaard, Chad Glenn Kirschner, Stephen Michael Oshgan, Paresh Shroff, Joseph Z. Wascow, Nicholas Patrick Jackson, Brian Alan Retzke, Daniel John Williams
  • Patent number: 9462668
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: October 4, 2016
    Assignee: ASML Netherlands B.V.
    Inventors: Yezheng Tao, Robert Jay Rafac, Igor Vladimirovich Fomenkov, Daniel John William Brown, Daniel James Golich
  • Publication number: 20160192468
    Abstract: A target material is provided at a target location, the target material including a material that emits extreme ultraviolet light when converted to plasma, and the target material extending in a first extent along a first direction and in a second extent along a second direction; an amplified light beam is directed along a direction of propagation toward the target location; and the amplified light beam is focused in a focal plane, where the target location is outside of the focal plane and an interaction between the amplified light beam and the target material converts at least part of the target material to plasma that emits EUV light.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Inventors: Robert Jay Rafac, Richard L. Sandstrom, Daniel John William Brown, Kai-Chung Hou
  • Publication number: 20160165709
    Abstract: A method and apparatus for protecting the seed laser a laser produced plasma (LPP) extreme ultraviolet (EUV) light system are disclosed. An isolation stage positioned on an optical path diverts light reflected from further components in the LPP EUV light system from reaching the seed laser. The isolation stage comprises two AOMs that are separated by a delay line. The AOMs, when open, direct light onto the optical path and, when closed, direct light away from the optical path. The delay introduced by the delay line is determined so that the opening and the closing of the AOMs can be timed to direct a forward-moving pulse onto the optical path and to divert reflected light at other times. The isolation stage can be positioned between gain elements to prevent amplified reflected light from reaching the seed laser and other potentially harmful effects.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 9, 2016
    Inventors: Yezheng Tao, Daniel John William Brown, Daniel J. Golich, Michael Kats, John T. Stewart, Rostislav Rokitski
  • Publication number: 20160046514
    Abstract: In the drinking water industry, pilot plants have played a big role in assisting water professionals, utilities, and engineering firms in generating information about the behavior of large full scale systems. Due to the identification of new contaminants, stringent regulations, and demand for improved water quality the demand for novel water treatment challenges across North America have significantly increased. A portable evaluation pilot skid (PEPS) accommodates all water qualities. A vent valve screen is mounted inside the contactor with holes large enough to prevent clogging. Air is introduced into the contactor prior to the screen. The screen is mounted such that it breaks the air into small bubbles creating the effect of a stone diffusor. Air flow is easily adjusted with a needle valve.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Applicant: U.S. ENVIRONMENTAL PROTECTION AGENCY
    Inventor: Daniel John Williams
  • Publication number: 20160029471
    Abstract: Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Inventors: Yezheng Tao, Robert Jay Rafac, Igor Vladimirovich Fomenkov, Daniel John William Brown, Daniel James Golich
  • Publication number: 20150317922
    Abstract: A physically-discrete sign component comprises an internally-electrically-illuminated alphabetic character having a front-facing profile and at least one connecting bar disposed at least substantially horizontally with respect to the front-facing profile of the alphabetic character and at least partially within the front-facing profile of that alphabetic character. By one approach the physically-discrete sign component includes two of the connecting bars. If desired, these two connecting bars are disposed at least substantially parallel to one another. By one approach, a first one of the connecting bars extends partially, but not wholly, above an upper periphery of the aforementioned front-facing profile while the second connecting bar extends partially, but not wholly, below a lower periphery of the front-facing profile. The connecting bars can include a connecting-bar interface configured to physically and electrically interconnect to an adjacent sign component.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 5, 2015
    Inventors: Sean Edward Callahan, James Cuppini, Mark Joseph Cleaver, Timothy Edward Canzano, Edward Wayted Chen, Elizabeth Marie Randgaard, Chad Glenn Kirschner, Stephen Michael Oshgan, Paresh Shroff, Joseph Z. Wascow, Nicholas Patrick Jackson, Brian Alan Retzke, Daniel John Williams
  • Patent number: 9038295
    Abstract: A physically-discrete sign component comprises an internally-electrically-illuminated alphabetic character having a front-facing profile and at least one connecting bar disposed at least substantially horizontally with respect to the front-facing profile of the alphabetic character and at least partially within the front-facing profile of that alphabetic character. By one approach the physically-discrete sign component includes two of the connecting bars. If desired, these two connecting bars are disposed at least substantially parallel to one another. By one approach, a first one of the connecting bars extends partially, but not wholly, above an upper periphery of the aforementioned front-facing profile while the second connecting bar extends partially, but not wholly, below a lower periphery of the front-facing profile. The connecting bars can include a connecting-bar interface configured to physically and electrically interconnect to an adjacent sign component.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: May 26, 2015
    Assignee: iLight Technologies, Inc.
    Inventors: Sean Edward Callahan, James Cuppini, Mark Joseph Cleaver, Timothy Edward Canzano, Edward Wayted Chen, Elizabeth Marie Randgaard, Chad Glenn Kirschner, Stephen Michael Oshgan, Paresh Shroff, Joseph Z. Wascow, Nicholas Patrick Jackson, Brian Alan Retzke, Daniel John Williams