Patents by Inventor Daniel Jon Peters

Daniel Jon Peters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8840562
    Abstract: Methods and systems are provided for using time-frequency warping to analyze a physiological signal. One embodiment includes applying a warping operator to the physiological signal based on the energy density of the signal. The warped physiological signal may be analyzed to determine whether non-physiological signal components are present. Further, the same warping operator may be applied to signal quality indicators, and the warped physiological signal may be analyzed based on the warped signal quality indicators. Non-physiological signal components, or types of non-physiological noise sources, may be identified based on a comparison of the physiological signal with the signal quality indicators. Non-physiological signal components may also be identified based on a neural network of known noise functions. In some embodiments, the non-physiological signal components may be removed to increase accuracy in estimating physiological parameters.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 23, 2014
    Assignee: Covidien LP
    Inventors: Edward M. McKenna, Daniel Jon Peters
  • Publication number: 20110071378
    Abstract: Methods and systems are provided for using time-frequency warping to analyze a physiological signal. One embodiment includes applying a warping operator to the physiological signal based on the energy density of the signal. The warped physiological signal may be analyzed to determine whether non-physiological signal components are present. Further, the same warping operator may be applied to signal quality indicators, and the warped physiological signal may be analyzed based on the warped signal quality indicators. Non-physiological signal components, or types of non-physiological noise sources, may be identified based on a comparison of the physiological signal with the signal quality indicators. Non-physiological signal components may also be identified based on a neural network of known noise functions. In some embodiments, the non-physiological signal components may be removed to increase accuracy in estimating physiological parameters.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 24, 2011
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Edward M. McKenna, Daniel Jon Peters