Patents by Inventor Daniel Joseph KLEMME

Daniel Joseph KLEMME has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220413140
    Abstract: Method and apparatus for obtaining range information associated with a target using light detection and ranging (LiDAR). An emitter transmits a set of pulses of electromagnetic radiation to illuminate a target. The set of pulses includes a pair of emitted pulses with different waveform characteristics, such as slightly different phases. A detector receives a reflected set of pulses from the target. The received set of pulses includes a pair of received pulses with corresponding different waveform characteristics. The detector determines the range information by decoding the received pulses, such as by calculating an average of the phase differential in the received pulses. In this way, a single stage detector can be used without the need for separate I/Q (in-phase and quadrature) channels. Phase chirping can be used so that each successive pair of pulses has a different phase difference. Other waveform characteristics can be used including frequency, amplitude, shape, etc.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 29, 2022
    Inventor: Daniel Joseph Klemme
  • Publication number: 20220413110
    Abstract: Method and apparatus for light detection and ranging (LiDAR). In some embodiments, an emitter is used to emit a set of pulses to impinge a target, and a detector is used to detect a corresponding set of reflected pulses. Range information associated with the target is extracted using the reflected pulses. To compensate for doppler shift and enable more emitted pulses to be in-flight between the system and the target, a maximum expected doppler shift is determined, and the emitted pulses are provided with differential frequency intervals that are greater than the determined maximum expected doppler shift, such as a multiple (e.g., 2×) of the maximum expected doppler shift. In some cases, each in-flight pulse will have a unique frequency separated from all other pulse frequencies by at least the maximum expected doppler shift. Adaptive adjustments can be made such as increasing the differential frequency intervals for long distance targets.
    Type: Application
    Filed: June 20, 2022
    Publication date: December 29, 2022
    Inventors: Daniel Joseph Klemme, Kevin A. Gomez
  • Publication number: 20220293132
    Abstract: Implementations described and claimed herein provide a high-capacity, high-bandwidth scalable storage device. The scalable storage device includes a layer stack including at least one memory layer and at least one optical control layer positioned adjacent to the memory layer. The memory layer includes a plurality of memory cells and the optical control layer is adapted to receive optically-encoded read/write signals and to effect read and write operations to the plurality of memory cells through an electrical interface.
    Type: Application
    Filed: August 31, 2020
    Publication date: September 15, 2022
    Inventors: Kevin A. GOMEZ, Dan MOHR, Daniel Joseph KLEMME, Aditya JAIN
  • Publication number: 20210405164
    Abstract: The technology disclosed herein includes a system having a light source configured to generate a laser signal, an optical signal splitter circuit configured to split the laser signal into a first laser signal for transmission to a plurality of targets and a second laser signal, an optical signal scanner configured to transmit the first laser signal to the plurality of targets, two or more optical delay lines configured to receive the second laser signal, wherein each of the two or more optical delay lines adds a predetermined time delay to the second laser signal to generate a delayed second laser signal, and a detector configured to receive a reflected laser signal from the plurality of targets, wherein the reflected laser signal includes a reflection of the first laser signal from the plurality of targets, and the delayed second laser signal.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Inventors: Daniel Joseph KLEMME, Pierre ASSELIN
  • Publication number: 20210273795
    Abstract: Systems and methods are disclosed for trusted imaging. In some examples, a trusted imaging device can emit a patterned light onto a real-world scene while an image sensor (e.g. photo or video) generates data representative of the real-world scene. The data can be processed to attempt to recover a pattern of the patterned light from the data. Whether, or to what extent, the pattern can be recovered can be determinative of a trustworthiness of the data from the image sensor. In further examples, the image data can be encrypted, as well as the imaging device output. In still further examples, a depth map of the image data can also be used to determine the trustworthiness of the image data.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: Eric James Dahlberg, Kevin Arthur Gomez, Dan Mohr, Daniel Joseph Klemme
  • Publication number: 20210074326
    Abstract: Implementations described and claimed herein provide a high-capacity, high-bandwidth scalable storage device. The scalable storage device includes a layer stack including at least one memory layer and at least one optical control layer positioned adjacent to the memory layer. The memory layer includes a plurality of memory cells and the optical control layer is adapted to receive optically-encoded read/write signals and to effect read and write operations to the plurality of memory cells through an electrical interface.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 11, 2021
    Inventors: Kevin A. GOMEZ, Dan MOHR, Daniel Joseph KLEMME, Aditya JAIN