Patents by Inventor Daniel K. Hildebrand

Daniel K. Hildebrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11278398
    Abstract: The present invention provides an apparatus for endovascularly replacing a patient's heart valve. In some embodiments, the apparatus includes an expandable anchor supporting a replacement valve, the anchor and replacement valve being adapted for percutaneous delivery and deployment to replace the patient's heart valve, the anchor having a braid having atraumatic grasping elements adapted to grasp tissue in a vicinity of the patient's heart valve.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: March 22, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Patent number: 11185408
    Abstract: A method for endovascularly replacing a patient's heart valve including the following steps: endovascularly delivering an anchor and a replacement valve supported within the anchor to a vicinity of the heart valve in a collapsed delivery configuration, the anchor having grasping elements adapted to grasp tissue in a vicinity of the heart valve; expanding the anchor, thereby rotating the grasping elements; and grasping the tissue with the rotating grasping elements.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: November 30, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Patent number: 10716663
    Abstract: The present invention relates to apparatus and methods for performing valvuloplasty. In some embodiments, the apparatus includes an expandable braid valvuloplasty device. In some embodiments, the methods and apparatus may be used as an adjunct to percutaneous heart valve replacement. In some embodiments, the apparatus and methods may provide a medical practitioner with feedback, monitoring or measurement information, e.g., information relevant to percutaneous transcatheter heart valve replacement.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: July 21, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Dwight P. Morejohn, Daniel K. Hildebrand, Tom Saul
  • Patent number: 10531952
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 14, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 10413409
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul
  • Publication number: 20190274829
    Abstract: The present invention provides an apparatus for endovascularly replacing a patient's heart valve. In some embodiments, the apparatus includes an expandable anchor supporting a replacement valve, the anchor and replacement valve being adapted for percutaneous delivery and deployment to replace the patient's heart valve, the anchor having a braid having atraumatic grasping elements adapted to grasp tissue in a vicinity of the patient's heart valve.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 12, 2019
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: AMR SALAHIEH, DANIEL K. HILDEBRAND, TOM SAUL
  • Publication number: 20190240008
    Abstract: A method for endovascularly replacing a patient's heart valve including the following steps: endovascularly delivering an anchor and a replacement valve supported within the anchor to a vicinity of the heart valve in a collapsed delivery configuration, the anchor having grasping elements adapted to grasp tissue in a vicinity of the heart valve; expanding the anchor, thereby rotating the grasping elements; and grasping the tissue with the rotating grasping elements.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Patent number: 10314695
    Abstract: The present invention provides an apparatus for endovascularly replacing a patient's heart valve. In some embodiments, the apparatus includes an expandable anchor supporting a replacement valve, the anchor and replacement valve being adapted for percutaneous delivery and deployment to replace the patient's heart valve, the anchor having a braid having atraumatic grasping elements adapted to grasp tissue in a vicinity of the patient's heart valve.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 11, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Patent number: 10258465
    Abstract: A method for endovascularly replacing a patient's heart valve including the following steps: endovascularly delivering an anchor and a replacement valve supported within the anchor to a vicinity of the heart valve in a collapsed delivery configuration, the anchor having grasping elements adapted to grasp tissue in a vicinity of the heart valve; expanding the anchor, thereby rotating the grasping elements; and grasping the tissue with the rotating grasping elements.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: April 16, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Publication number: 20180214266
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 2, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9872768
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: January 23, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Publication number: 20170196689
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 13, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul
  • Publication number: 20170119524
    Abstract: The present invention relates to apparatus and methods for performing valvuloplasty. In some embodiments, the apparatus includes an expandable braid valvuloplasty device. In some embodiments, the methods and apparatus may be used as an adjunct to percutaneous heart valve replacement. In some embodiments, the apparatus and methods may provide a medical practitioner with feedback, monitoring or measurement information, e.g., information relevant to percutaneous transcatheter heart valve replacement.
    Type: Application
    Filed: June 6, 2016
    Publication date: May 4, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Dwight P. Morejohn, Daniel K. Hildebrand, Tom Saul
  • Publication number: 20170112621
    Abstract: A method for endovascularly replacing a patient's heart valve including the following steps: endovascularly delivering an anchor and a replacement valve supported within the anchor to a vicinity of the heart valve in a collapsed delivery configuration, the anchor having grasping elements adapted to grasp tissue in a vicinity of the heart valve; expanding the anchor, thereby rotating the grasping elements; and grasping the tissue with the rotating grasping elements.
    Type: Application
    Filed: October 3, 2016
    Publication date: April 27, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Publication number: 20170027693
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: June 6, 2016
    Publication date: February 2, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9532872
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: January 3, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul
  • Patent number: 9358110
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: June 7, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9358106
    Abstract: The present invention relates to apparatus and methods for performing valvuloplasty. In some embodiments, the apparatus includes an expandable braid valvuloplasty device. In some embodiments, the methods and apparatus may be used as an adjunct to percutaneous heart valve replacement. In some embodiments, the apparatus and methods may provide a medical practitioner with feedback, monitoring or measurement information, e.g., information relevant to percutaneous transcatheter heart valve replacement.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: June 7, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Dwight P. Morejohn, Daniel K. Hildebrand, Tom Saul
  • Patent number: 9320599
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: April 26, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Daniel K. Hildebrand, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20150127094
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 7, 2015
    Applicant: SADRA MEDICAL, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul