Patents by Inventor Daniel Körtvelyessy

Daniel Körtvelyessy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100212541
    Abstract: The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties.
    Type: Application
    Filed: May 5, 2010
    Publication date: August 26, 2010
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Raymond Ullrich
  • Publication number: 20100189920
    Abstract: In a method for producing a component (20) with a coating (24) containing nanoparticles (21), it is provided that, in order to introduce the nanoparticles (21) into the coating (24), a film (19) with the dispersely distributed nanoparticles (21) is applied to the surface (22) to be coated, which decomposes with incorporation of the nanoparticles (21) during the actual coating operation and is thereby not incorporated into the layer.
    Type: Application
    Filed: June 20, 2007
    Publication date: July 29, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 7763367
    Abstract: The subject matter of the invention is a component which is provided with a ceramic coating forming the surface. Inventively there is provision at least in a cover layer of the coating for nanoparticles made from a colorant (CrCoAl or a spinel-type oxide) and aluminum oxide nanoparticles. This combination of nanoparticles in the coating advantageously results in a resistance to high temperatures of the coloring of the surface of up to 1000° C. not previously known. This allows even components under great stress, such as for example compressor or turbine blades of a gas turbine, to be provided with temperature-resistant coloring. This can then be used for an optical inspection for example. Protection is also claimed for a method for creating the inventive coating.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 27, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Frank Arndt, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Gabriele Winkler
  • Publication number: 20100183826
    Abstract: A description is given of a method for depositing a non-metallic, in particular ceramic, coating on a substrate (2) by means of cold gas spraying, which comprises the method steps of: producing a reactive gas flow (5) comprising at least one reactive gas, injecting into the reactive gas flow (5) particles (4) consisting of at least one material required for producing a non-metallic, in particular ceramic, coating material by reaction with the reactive gas, so as to form a mixture flow of reactive gas and particles (4), producing reactive gas radicals in the mixture flow, and directing the mixture flow comprising reactive gas radicals and particles onto a surface of a substrate (2) to be coated, and so a non-metallic, in particular ceramic, coating is deposited on the surface of the substrate (2). In addition, a description is given of a device (1) for carrying out the method.
    Type: Application
    Filed: September 29, 2006
    Publication date: July 22, 2010
    Inventors: Dirk Janz, Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Patent number: 7744351
    Abstract: The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties. The inventive material composition is characterized in that the matrix material and/or the filler contains nanoparticles.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 29, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Raymond Ullrich
  • Patent number: 7740905
    Abstract: The invention relates to a method of, and a nozzle arrangement for, spraying cold gas. The nozzle arrangement has a first nozzle and a second nozzle, which is arranged within the first nozzle. The first nozzle is fed a gas which optionally contains particles. The second nozzle is fed a particle-containing gas. The particles are applied to a surface of the substrate by means of the gases.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 22, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100098845
    Abstract: In a method particles are delivered to a thermal spraying process for forming a layer on a component. They are entrained there by a carrier gas stream and deposited on a component to be coated. The particles are dispersed in a liquid or solid additive before being introduced into a supply line which issues into the thermal spraying apparatus, the additive, after leaving the supply line, being transferred into the gaseous state in the carrier gas stream. A liquid additive evaporates or a solid additive is sublimated, whereby the particles in the carrier gas stream are separated. The dispersal of the particles in the additive simplifies an exact metering and prevents the particles from forming lumps, so that improved layers can be deposited by virtue of an improved homogeneity of the carrier gas stream. As the additive has been transferred into the gaseous state, it is not deposited in the layer.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 22, 2010
    Inventors: Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Publication number: 20100089768
    Abstract: The invention relates to a method for the electrochemical removal of a metal coating from a component. According to said method, the component is immersed in an electrolyte solution and a current is passed through the component and a secondary electrode that is in contact with the electrolyte. The current is pulsed with a routine that has a duty cycle >10 to <90%, two current densities between 5 mA/cm2 to 1000 mA/cm2 and a frequency of 5 Hz to 1000 Hz.
    Type: Application
    Filed: March 22, 2007
    Publication date: April 15, 2010
    Inventors: Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Gabriele Winkler
  • Publication number: 20100072073
    Abstract: A method for the electrochemical application or removal of a coating of components (1) is made available, in which the component (1) serves as an electrode and in which, between the component (1) and the counterelectrode (3), an electrical field is built up which leads to the deposition of a coating material dissolved in an electrolyte or to the removal of a coating material (11) located on the component surface (2). During deposition or during removal, the component (1) is covered by structures (5) consisting of an electrically insulating material.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 25, 2010
    Inventors: Rene Jabado, Jens Dahi Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100047592
    Abstract: The turbine parts, when they are used, form oxide layers which by the undesirable rapid growth thereof generate the damage of the parts substrate. The inventive method consists in depleting the part in an element in such a way that the oxide layer is reduced.
    Type: Application
    Filed: October 18, 2005
    Publication date: February 25, 2010
    Inventors: Rene Jabado, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler
  • Publication number: 20100035084
    Abstract: A method for producing a cast metal piece and a cast metal piece are provided. An information element includes at least one piece of information. The information element is produced from a magnetizable material and the information is deposited n the magnetizable material and is cast into the information element during casting of the price, the casting temperature being above the Curie temperature of the magnetizable material of the information element.
    Type: Application
    Filed: June 19, 2007
    Publication date: February 11, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursua Krüger, Daniel Körtvelyessy, Richard Matz, Ralph Reiche, Michael Rindler, Steffen Walter
  • Publication number: 20100032619
    Abstract: In a method for producing a particle (10) containing functional layer (310, 400, 600), nanoparticles are introduced into the functional layer material (320, 410, 610), the nanoparticles having a particle core (20) and a particle shell (30) surrounding the particle core. The material (K) of the particle core has a higher chemical activity than that of the particle shell and the material (M) of the particle shell allows diffusion of the material of the particle core through the particle shell into the functional layer material.
    Type: Application
    Filed: September 14, 2006
    Publication date: February 11, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100025262
    Abstract: The invention relates inter alia to a method for removing a protective coating from a component, especially a turbine blade. According to the invention, the protective coating is removed, using mechanical shock waves having a shock wave repetition rate below 20 kHz.
    Type: Application
    Filed: June 19, 2007
    Publication date: February 4, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 7631816
    Abstract: The cold spraying process according to the invention uses cold gas streams whose properties (temperature (T), particle density (?), pressure (p), particle velocity (v)) are variably changed such that they can be adapted to the desired properties of the coatings.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: December 15, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090306289
    Abstract: A powder can be produced by immersing microparticles (2) in a first solution (4) which contains coupling molecules (5), and then in a second solution (10) which contains the nanoparticles (12), thereby producing microparticles (2) with nanoparticles (12) attached thereto. The particles form powder particles (14) which allow nanoparticles (12) that are smaller than approximately 5 [mu] to be applied to a component by cold gas spraying.
    Type: Application
    Filed: September 27, 2007
    Publication date: December 10, 2009
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090297701
    Abstract: A method of repairing a component, in particular a gas turbine component, which is produced from a base material with an oriented microstructure, comprises the steps of: cleaning the repair site, filling the repair site with a filling material corresponding to the composition of the base material, carrying out a heat treatment in the region of the filled repair site, wherein the filling material has micro- and/or nano-scale particles, during the filling of the repair site measures which prevent the oxidation of the filling material are taken, an the temperatures and holding times of the heat treatment are set appropriately for the composition of the filling material and of the base material of the component in such a way that an epitaxial attachment of the filling material to the surrounding bas material takes place.
    Type: Application
    Filed: September 27, 2006
    Publication date: December 3, 2009
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Michael Ott, Ralph Reiche, Michael Rindler, Rolf Wilkenhöner
  • Publication number: 20090238693
    Abstract: There is described a substrate with a coating; the coating contains a coating matrix in whose matrix structure multilayered and/or encapsulated nanoparticles are arranged and release a dye when a limit temperature is exceeded the first time and/or trigger a color reaction which causes the color of the coating to change irreversibly.
    Type: Application
    Filed: September 27, 2006
    Publication date: September 24, 2009
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090208344
    Abstract: There is described a method wherein through holes of a wall are treated on a inside, and wherein one respective pole electrode is assigned to each through hole that is to be processed.
    Type: Application
    Filed: September 16, 2005
    Publication date: August 20, 2009
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rene Jabado, Uwe Kaden, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Peter Tiemann, Iris Oltmanns
  • Publication number: 20090202814
    Abstract: Prior art protective layers can exercise their protecting function because they are depleted in a specific element which forms a protective oxide, or which is used as sacrificial material. When said material has been consumed, the protecting function can no longer be provided. The invention is characterized in that it consists in using powder particles comprising a reserve of the consumed material, which is delivered in delayed manner. Therefor, the material is enclosed in an envelope.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 13, 2009
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach
  • Patent number: 7569133
    Abstract: Apparatus and process for removing surface regions of a component. The prior art involves removing surface regions of a metallic component by means of electrochemical processes. The electrochemical process is accelerated by the use of a current pulse generator.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: August 4, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Daniel Körtvelyessy, Ralph Reiche, Jan Steinbach, Marc de Vogelaere