Patents by Inventor Daniel Kapp

Daniel Kapp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10916462
    Abstract: A method of focusing includes irradiating an object by directing radiation output by a radiating source through an objective lens, measuring a first intensity of reflected radiation that is reflected from the object, adjusting a distance between the objective lens and the object, measuring a second intensity of reflected radiation, and analyzing the first intensity of reflected radiation and the second intensity of reflected radiation to determine a focal distance between the objective lens and the object. The distance between the objective lens and the object is adjusted to the focal distance and the irradiating intensity is increased to mark the object. In another example, measuring the first intensity of reflected radiation is performed by directing reflected radiation from the object through the objective lens, a beam splitter, a focusing lens, and a pinhole and onto a sensor that outputs a signal indicative of sensed radiation intensity.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: February 9, 2021
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Timothy Russin, Shiyu Zhang, Charles Amsden, Daniel Kapp
  • Publication number: 20190122912
    Abstract: A method of focusing includes irradiating an object by directing radiation output by a radiating source through an objective lens, measuring a first intensity of reflected radiation that is reflected from the object, adjusting a distance between the objective lens and the object, measuring a second intensity of reflected radiation, and analyzing the first intensity of reflected radiation and the second intensity of reflected radiation to determine a focal distance between the objective lens and the object. The distance between the objective lens and the object is adjusted to the focal distance and the irradiating intensity is increased to mark the object. In another example, measuring the first intensity of reflected radiation is performed by directing reflected radiation from the object through the objective lens, a beam splitter, a focusing lens, and a pinhole and onto a sensor that outputs a signal indicative of sensed radiation intensity.
    Type: Application
    Filed: August 9, 2018
    Publication date: April 25, 2019
    Inventors: Timothy Russin, Shiyu Zhang, Charles Amsden, Daniel Kapp
  • Patent number: 10082470
    Abstract: Methods and systems for accurately locating buried defects previously detected by an inspection system are described herein. A physical mark is made on the surface of a wafer near a buried defect detected by an inspection system. In addition, the inspection system accurately measures the distance between the detected defect and the physical mark in at least two dimensions. The wafer, an indication of the nominal location of the mark, and an indication of the distance between the detected defect and the mark are transferred to a material removal tool. The material removal tool (e.g., a focused ion beam (FIB) machining tool) removes material from the surface of the wafer above the buried defect until the buried defect is made visible to an electron-beam based measurement system. The electron-beam based measurement system is subsequently employed to further analyze the defect.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: September 25, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: David Shortt, Steven Lange, Junwei Wei, Daniel Kapp, Charles Amsden
  • Publication number: 20180088056
    Abstract: Methods and systems for accurately locating buried defects previously detected by an inspection system are described herein. A physical mark is made on the surface of a wafer near a buried defect detected by an inspection system. In addition, the inspection system accurately measures the distance between the detected defect and the physical mark in at least two dimensions. The wafer, an indication of the nominal location of the mark, and an indication of the distance between the detected defect and the mark are transferred to a material removal tool. The material removal tool (e.g., a focused ion beam (FIB) machining tool) removes material from the surface of the wafer above the buried defect until the buried defect is made visible to an electron-beam based measurement system. The electron-beam based measurement system is subsequently employed to further analyze the defect.
    Type: Application
    Filed: February 13, 2017
    Publication date: March 29, 2018
    Inventors: David Shortt, Steven Lange, Junwei Wei, Daniel Kapp, Charles Amsden