Patents by Inventor Daniel Keith Van Ostrand
Daniel Keith Van Ostrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11586309Abstract: A touch screen display includes a display, a video graphics processing module, electrodes integrated into at least a portion of the display, and drive-sense circuits coupled to the electrodes. The drive-sense circuits, when enabled and concurrent with the display rendering frames of data into the visible images, detect changes in electrical characteristics of electrodes. At least some drive-sense circuits monitor sensor signals on at least some electrodes. A sensor signal includes a drive signal component and a receive signal component. The at least some drive-sense circuits generate the drive signal components of the sensor signals. The receive signal component is a representation of a change in an electrical characteristic of an electrode of the at least some electrodes when a corresponding drive signal component is applied to the electrode. The change in the electrical characteristic of the electrode is indicative of a proximal touch to the touch screen display.Type: GrantFiled: January 26, 2021Date of Patent: February 21, 2023Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Publication number: 20230052531Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.Type: ApplicationFiled: October 28, 2022Publication date: February 16, 2023Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Publication number: 20230052978Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: ApplicationFiled: October 28, 2022Publication date: February 16, 2023Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Patent number: 11580045Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.Type: GrantFiled: November 5, 2021Date of Patent: February 14, 2023Assignee: SIGMASENSE, LLC.Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
-
Patent number: 11580047Abstract: A low voltage drive circuit includes a transmit digital to analog circuit that converts transmit digital data into analog outbound data by: generating a DC component; generating a first oscillation at a first frequency; generating a second oscillation at the first frequency; and outputting the first oscillation or the second oscillation on a bit-by-bit basis in accordance with the transmit digital data to produce an oscillating component, wherein the DC component is combined with the oscillating component to produce the analog outbound data, and wherein the oscillating component and the DC component are combined to produce the analog outbound data. A drive sense circuit drives an analog transmit signal onto a bus, wherein the analog outbound data is represented within the analog transmit signal as variances in loading of the bus at the first frequency and wherein analog inbound data is represented within an analog receive signal as variances in loading of the bus at a second frequency.Type: GrantFiled: May 18, 2022Date of Patent: February 14, 2023Assignee: SigmaSense, LLCInventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
-
Publication number: 20230038539Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.Type: ApplicationFiled: October 20, 2022Publication date: February 9, 2023Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Ph.D., Timothy W. Markison
-
Publication number: 20230041204Abstract: A method includes transmitting, by a plurality of drive sense circuits of a primary interactive display device, a plurality of signals on a plurality of electrodes of the primary interactive display device. At least one change in electrical characteristics of a set of electrodes is detected by a set of drive sense circuits during a temporal period. A stream of user notion data is determined by a processing module of the primary interactive display device based on interpreting the at least one change in the electrical characteristics of the set of electrodes during the temporal period. The stream of user notation data is displayed via a display of the primary interactive display device during the temporal period. The stream of user notation data is transmitted, via a network interface of the primary interactive display device, to a plurality of secondary interactive display devices for display.Type: ApplicationFiled: August 13, 2021Publication date: February 9, 2023Applicant: SigmaSense, LLC.Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
-
Publication number: 20230039953Abstract: A device having a flexible touch screen display configured to display images in at least a first touch area and a second touch area. The first touch area is configured to rotate with respect to the second touch area along a folding axis. A first plurality of touch sensitive column electrodes are integrated into the first touch area, a second plurality of column electrodes are integrated into the second touch area of the flexible display, and a plurality of row electrodes are integrated into and extend across the first touch area and the second touch area. Also included are a plurality of drive-sense circuits that drive sensor signals on the electrodes.Type: ApplicationFiled: August 4, 2021Publication date: February 9, 2023Applicant: SigmaSense, LLC.Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray
-
Publication number: 20230032551Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.Type: ApplicationFiled: September 29, 2022Publication date: February 2, 2023Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Michael Shawn Gray, Kevin Joseph Derichs
-
Publication number: 20230034926Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: ApplicationFiled: September 29, 2022Publication date: February 2, 2023Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Patent number: 11569695Abstract: A device operative to transfer power and communicate wirelessly includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s). The DSC generates a drive signal based on a reference signal and provides the drive signal to a first coil via a single line and via a resonating capacitor, and simultaneously senses the drive signal via the single line, to facilitate electromagnetic coupling to a second coil to transfer power wirelessly to another device. The DSC also detects electrical characteristic(s) of the drive signal including whether a communication signal is transmitted from another device and generates a digital signal representative thereof.Type: GrantFiled: June 25, 2021Date of Patent: January 31, 2023Assignee: SIGMASENSE, LLC.Inventors: John Christopher Price, Daniel Keith Van Ostrand, Phuong Huynh
-
Patent number: 11567135Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: GrantFiled: June 29, 2022Date of Patent: January 31, 2023Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Patent number: 11567465Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.Type: GrantFiled: April 15, 2021Date of Patent: January 31, 2023Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Publication number: 20230028217Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; determining, based on the positive capacitance variation data and the negative capacitance variation data, an upper threshold and a lower threshold; generating compensated capacitance image data, based on the upper threshold and the lower threshold, to compensate for noise in the capacitance image data; and processing the compensated capacitance image data to determine a proximal condition of the touch screen display.Type: ApplicationFiled: September 23, 2022Publication date: January 26, 2023Applicant: SigmaSense, LLC.Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Hans Howard Eilers, Kevin Joseph Derichs, Sarah Marie Derichs, Patrick Troy Gray, Phuong Huynh
-
Publication number: 20230027795Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: ApplicationFiled: September 28, 2022Publication date: January 26, 2023Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Patent number: 11561646Abstract: A drive sense circuit comprises an analog front-end. The analog front-end generates an analog drive sense signal based on an analog reference signal that has a magnitude that is substantially less than a supply rail power of the drive sense circuit. When the drive sense circuit is coupled to a load, the analog front end drives the load with the analog drive-sense signal and detects an analog signal variation in the analog drive-sense signal based on a characteristic of the load.Type: GrantFiled: July 26, 2022Date of Patent: January 24, 2023Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Publication number: 20230019284Abstract: A touch-sensitive panel includes row electrodes, column electrodes, and drive-sense circuits coupled to the row electrodes and the column electrodes. The drive-sense circuits detect changes in impedances of the row and column electrodes. The touch-sensitive panel also includes analog-to-digital converters coupled to outputs of the drive-sense circuits, and a processing module coupled to the drive-sense circuits via the analog-to-digital converters. The processing module, the analog-to-digital converters, and the plurality of drive-sense circuits cooperate to sense an information signal capacitively coupled to the row and column electrodes, and to extract data from the information signal to identify a device that produced the information signal.Type: ApplicationFiled: July 19, 2021Publication date: January 19, 2023Applicant: SIGMASENSE, LLC.Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray, Timothy W. Markison
-
Patent number: 11556298Abstract: A method includes transmitting, by a plurality of drive sense circuits of a primary interactive display device, a plurality of signals on a plurality of electrodes of the primary interactive display device. At least one change in electrical characteristics of a set of electrodes is detected by a set of drive sense circuits during a temporal period. A stream of user notion data is determined by a processing module of the primary interactive display device based on interpreting the at least one change in the electrical characteristics of the set of electrodes during the temporal period. The stream of user notation data is displayed via a display of the primary interactive display device during the temporal period. The stream of user notation data is transmitted, via a network interface of the primary interactive display device, to a plurality of secondary interactive display devices for display.Type: GrantFiled: August 13, 2021Date of Patent: January 17, 2023Assignee: SigmaSense, LLCInventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
-
Patent number: 11555687Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.Type: GrantFiled: August 8, 2019Date of Patent: January 17, 2023Assignee: SigmaSense, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Shayne X. Short, Timothy W. Markison
-
Patent number: 11550426Abstract: A computing subsystem includes a plurality of drive-sense circuits operable for coupling to a plurality of loads and a processing module operable for coupling to the plurality of drive-sense circuits. A drive-sense circuit generates a small magnitude analog drive signal based on a reference signal, regulates the small magnitude analog drive signal as a characteristic of a load, generates a change signal based on regulation of the small magnitude analog drive signal, and generates a digital signal based on the change signal, wherein the digital signal is indicative of the characteristic of the load. The processing module is operable to receive a set of digital signals from at least some of the plurality of drive-sense circuits and process the set of digital signals to produce a plurality of frames of load data regarding the plurality of loads.Type: GrantFiled: April 30, 2021Date of Patent: January 10, 2023Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.