Patents by Inventor Daniel Kortvelyessy

Daniel Kortvelyessy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8846216
    Abstract: A method for producing a cast metal piece and a cast metal piece are provided. An information element includes at least one piece of information. The information element is produced from a magnetizable material and the information is deposited n the magnetizable material and is cast into the information element during casting of the price, the casting temperature being above the Curie temperature of the magnetizable material of the information element.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: September 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Richard Matz, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 8673405
    Abstract: In a method for producing a starting material (M, N, N?) for the production of a wear layer (420), a coating (40) with a composition which corresponds to that of the wear layer (420) which is to be produced is chemically undissolved from its substrate (30) and is detached as a solid body, and that the starting material (M, N, N?) is formed by the layer material (60) of the detached coating (40).
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: March 18, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 8574687
    Abstract: In a method for depositing a non-metallic, in particular ceramic, coating on a substrate (2) by cold gas spraying, the method has the steps of: producing a reactive gas flow (5) having at least one reactive gas, injecting into the reactive gas flow (5) particles (4) consisting of at least one material required for producing a non-metallic, in particular ceramic, coating material by reaction with the reactive gas, so as to form a mixture flow of reactive gas and particles (4), producing reactive gas radicals in the mixture flow, and directing the mixture flow having reactive gas radicals and particles onto a surface of a substrate (2) to be coated, and so a non-metallic, in particular ceramic, coating is deposited on the surface of the substrate (2). In addition, a description is given of a device (1) for carrying out the method.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dirk Janz, Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Patent number: 8563094
    Abstract: In a method for producing a component (20) with a coating (24) containing nanoparticles (21), it is provided that, in order to introduce the nanoparticles (21) into the coating (24), a film (19) with the dispersely distributed nanoparticles (21) is applied to the surface (22) to be coated, which decomposes with incorporation of the nanoparticles (21) during the actual coating operation and is thereby not incorporated into the layer.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 22, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 8518485
    Abstract: The turbine parts, when they are used, form oxide layers which by the undesirable rapid growth thereof generate the damage of the parts substrate. The inventive method consists in depleting the part in an element in such a way that the oxide layer is reduced.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: August 27, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler
  • Patent number: 8356936
    Abstract: There is described a substrate with a coating; the coating contains a coating matrix in whose matrix structure multilayered and/or encapsulated nanoparticles are arranged and release a dye when a limit temperature is exceeded the first time and/or trigger a color reaction which causes the color of the coating to change irreversibly.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: January 22, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 8343573
    Abstract: A method for repairing a component such as a turbine blade is provided. At the end of its operating time, the component has, for example, a depletion of aluminium in a region near the surface. The application of a repair layer is provided including particles with an increased proportion of aluminium. A subsequent heat treatment may achieve the effect of equalizing the concentration of aluminium between the repair layer and the region near the surface, and so the aluminium content required for new components is achieved again.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 1, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Patent number: 8277194
    Abstract: The invention relates to a component for arrangement in the duct of a turbine engine. The component is provided with a coating, which has a surface structure with scales which overlap each other in the direction of flow of the turbine engine. The invention also relates to a spraying method for generating a coating on a component.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: October 2, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler
  • Patent number: 8252384
    Abstract: In a method particles in a thermal spraying process are entrained by a carrier gas stream and deposited on a component to be coated. The particles are dispersed in a liquid or solid additive before being introduced into a supply line which issues into the thermal spraying apparatus, the additive, after leaving the supply line, being transferred into the gaseous state in the carrier gas stream. A liquid additive evaporates or a solid additive is sublimated, whereby the particles in the carrier gas stream are separated. The dispersal of the particles in the additive simplifies an exact metering and prevents the particles from forming lumps, so that improved layers can be deposited by virtue of an improved homogeneity of the carrier gas stream. As the additive has been transferred into the gaseous state, it is not deposited in the layer.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 28, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Patent number: 8158704
    Abstract: A powder can be produced by immersing microparticles (2) in a first solution (4) which contains coupling molecules (5), and then in a second solution (10) which contains the nanoparticles (12), thereby producing microparticles (2) with nanoparticles (12) attached thereto. The particles form powder particles (14) which allow nanoparticles (12) that are smaller than approximately 5 [mu] to be applied to a component by cold gas spraying.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 17, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 8080278
    Abstract: The invention relates to a cold gas spraying method with the aid of which a substrate to be coated can be coated with particles. According to the invention, it is provided that microencapsulated agglomerates of nanoparticles are used as particles. This advantageously allows the advantages that accompany the use of nanoparticles to be used for the coating. The nanoparticles are held together by microencapsulations, wherein the microencapsulated particles formed in this way that are used in the cold gas spraying method have dimensions in the micrometer range, thereby allowing them to be used in the first place in cold gas spraying The microencapsulated nanoparticles may be used for example to produce a UV protective coating on lamp bases for gas discharge lamps.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 20, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Uwe Pyritz, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 8025203
    Abstract: Short fibers in a solder or a welding material often do not have the desired strength. Fiber mats that are introduced onto a surface or into a recess of a metallic component are provided. In addition a process for applying material to a metallic component is provided. In the process, a first fiber mat and a second fiber mat are used.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: September 27, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 7906171
    Abstract: The invention relates to a method for producing a layer (110) having nanoparticles (40), on a substrate (100). The invention is based on the object of specifying a method for producing a layer containing nanoparticles, which method can be carried out particularly easily and nevertheless offers a very wide degree of freedom for the configuration and the composition of the layer to be produced. According to the invention, this object is achieved in that nanoparticles (40) are released and a nanoparticle stream (50) is produced in a first process chamber (10), the nanoparticle stream (50) is passed into a second process chamber (80), and the nanoparticles (40) are deposited on the substrate (100) in the second process chamber (80).
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: March 15, 2011
    Assignee: Siemens Aktiegesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler
  • Publication number: 20110039024
    Abstract: The invention relates to a cold gas spraying method with the aid of which a substrate to be coated can be coated with particles. According to the invention, it is provided that microencapsulated agglomerates of nanoparticles are used as particles. This advantageously allows the advantages that accompany the use of nanoparticles to be used for the coating. The nanoparticles 271, 27b are held together by microencapsulations 26c, wherein the microencapsulated particles 19 formed in this way that are used in the cold gas spraying method have dimensions I the micrometer range, thereby allowing them to be used in the first place in cold gas spraying The microencapsulated nanoparticles may be used for example to produce a UV protective coating on lamp bases for gas discharge lamps.
    Type: Application
    Filed: September 15, 2006
    Publication date: February 17, 2011
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Uwe Pyritz, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100314023
    Abstract: Short fibers in a solder or a welding material often do not have the desired strength. Fiber mats that are introduced onto a surface or into a recess of a metallic component are provided. In addition a process for applying material to a metallic component is provided. In the process, a first fiber mat and a second fiber mat are used.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Steffen Walter
  • Publication number: 20100297345
    Abstract: A method for repairing a component such as a turbine blade is provided. At the end of its operating time, the component has, for example, a depletion of aluminium in a region near the surface. The application of a repair layer is provided including particles with an increased proportion of aluminium. A subsequent heat treatment may achieve the effect of equalizing the concentration of aluminium between the repair layer and the region near the surface, and so the aluminium content required for new components is achieved again.
    Type: Application
    Filed: September 19, 2008
    Publication date: November 25, 2010
    Inventors: Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Publication number: 20100272888
    Abstract: In a method for producing a starting material (M, N, N?) for the production of a wear layer (420), a coating (40) with a composition which corresponds to that of the wear layer (420) which is to be produced is chemically undissolved from its substrate (30) and is detached as a solid body, and that the starting material (M, N, N?) is formed by the layer material (60) of the detached coating (40).
    Type: Application
    Filed: July 9, 2007
    Publication date: October 28, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 7811662
    Abstract: Short fibers in a solder or a welding material often do not have the desired strength. The invention uses fiber mats (13) which have been introduced onto a surface (10) or into a recess (7) of a metallic component.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 12, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 7794581
    Abstract: Components which are subject to operating loads can often be passed for refurbishment by means of an acid treatment. The time for which the components remain in the acid has hitherto been determined empirically, which means that individual loads are not taken into account. The process according to the invention for the surface treatment of a component proposes that at least repeatedly a measurement voltage be applied to the component, resulting in the flow of a current, the time profile of which represents the state of the surface treatment and is used to decide upon when to terminate or interrupt the acid treatment.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: September 14, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Jan Steinbach, Gabriele Winkler
  • Publication number: 20100215869
    Abstract: In a process for producing a ceramic layer (14) on a component (15) in a microwave oven (11), it is provided that a microwave generator (12) generates microwaves (17) of a defined frequency which selectively heats only constituents of the coating material (14) applied for coating the component (15). It is thereby advantageously possible to produce a ceramic layer from the precursors present in the coating material with low energy consumption and with low thermal loading of the component (15). The frequency of the microwave excitation can be set, for example, to the solvent (acetic acid, propionic acid) present in the coating material or to the heating of particles of intermetallic compounds or ceramics present in the coating material for this purpose.
    Type: Application
    Filed: June 13, 2008
    Publication date: August 26, 2010
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Gabriele Winkler