Patents by Inventor Daniel Krommenhoek

Daniel Krommenhoek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9204111
    Abstract: A modular imaging system includes a camera module having a camera and an electrical interface for providing a video signal representing an image picked up by the camera, a wireless transmitter module having an electrical interface for receiving the video signal from the camera module and generating a high frequency signal, a wireless receiver module for receiving the high frequency signal from the wireless transmitter module and producing a baseband signal, and a display module for receiving the baseband signal and displaying the baseband signal on a display.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 1, 2015
    Assignee: Eomax Corporation
    Inventors: Kenneth Thomas Smart, Johan Daniel Krommenhoek
  • Publication number: 20110284048
    Abstract: A multi-layer superlattice quantum well thermoelectric material comprising at least 10 alternating layers has a layer thickness of each less than 50 nm, the alternating layers being electrically conducting and barrier layers, wherein the layer structure shows no discernible interdiffusion leading to a break-up or dissolution of the layer boundaries upon heat treatment at a temperature in the range from 50 to 150° C. for a time of at least 100 hours and the concentration of doping materials in the conducting layers is 1018 to 1023 cm?3 and in the barrier layers is 1013 to 1018 cm?3.
    Type: Application
    Filed: March 28, 2011
    Publication date: November 24, 2011
    Applicants: Hi - Z Technology, Inc., BASF SE
    Inventors: Frank HAASS, Norbert B. ELSNER, Laverne Elsner, Saeid GHAMATY, Daniel KROMMENHOEK
  • Publication number: 20110221907
    Abstract: A modular imaging system includes a camera module having a camera and an electrical interface for providing a video signal representing an image picked up by the camera, a wireless transmitter module having an electrical interface for receiving the video signal from the camera module and generating a high frequency signal, a wireless receiver module for receiving the high frequency signal from the wireless transmitter module and producing a baseband signal, and a display module for receiving the baseband signal and displaying the baseband signal on a display.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 15, 2011
    Applicant: Eomax Corporation
    Inventors: Kenneth Thomas Smart, Johan Daniel Krommenhoek
  • Publication number: 20110100408
    Abstract: A thermoelectric module comprised of a quantum well thermoelectric material with low thermal conductivity and low electrical resitivity (high conductivity) for producing n-legs and p-legs for thermoelectric modules. These qualities are achieved by fabricating crystalline quantum well super-lattice layers on a substrate material having very low thermal conductivity. Prior to depositing the super-lattice thermoelectric layers the low thermal conductivity substrate is coated with a thin layer of crystalline semi-conductor material, preferably silicon. This greatly improves the thermoelectric quality of the super-lattice quantum well layers. In preferred embodiments the super-lattice layers are about 4 nm to 20 nm thick. In preferred embodiments about 100 to 1000 of these super-lattice layers are deposited on each substrate layer, to provide films of super-lattice layers with thicknesses of in the range of about 0.4 microns to about 20 microns on much thicker substrates.
    Type: Application
    Filed: January 6, 2010
    Publication date: May 5, 2011
    Inventors: Aleksandr Kushch, Frederick A. Leavitt, Daniel Krommenhoek, Saeid Ghamaty, Norbert B. Elsner
  • Publication number: 20100269879
    Abstract: Quantum well thermoelectric modules and a low-cost method of mass producing the modules. The devices are comprised of n-legs and p-legs, each leg being comprised of layers of quantum well material in the form of very thin alternating layers. In the n-legs the alternating layers are layers of n-type semiconductor material and electrical insulating material. In the p-legs the alternating layers are layers of p-type semiconductor material and electrical insulating material. In preferred embodiments the layers, referred to as superlattice layers are about 4 nm to 20 nm thick. The layers of quantum well material is separated by much larger layers of thermal and electrical insulating material such that the volume of insulating material in each leg is at least 20 times larger than the volume of quantum well material.
    Type: Application
    Filed: July 17, 2009
    Publication date: October 28, 2010
    Inventors: Fred Leavitt, Daniel Krommenhoek, Saeid Ghamaty, Norbert Elsner
  • Publication number: 20080257395
    Abstract: A miniature quantum well thermoelectric device. The device includes a number of quantum well n-legs and a number of quantum well p-legs. Each of the p-legs are alternately electrically connected in series with each of the n-legs at locations that are thermal communication with a cold side and a hot side. The device can be adapted to function as a cooler and it can be adapted to function as an electric power generator. In a preferred embodiment the p-legs and said n-legs are configured generally radially between the hot side and the cold side. In this preferred embodiments each of the n-legs has at least 600 n-type layers with each n-type layer separated from other n-type layers by an insulating layer and each of the p-legs has at least 600 p-type layers with each p-type layer separated from other p-type layers by an insulating layer.
    Type: Application
    Filed: March 12, 2008
    Publication date: October 23, 2008
    Inventors: Velimir Jovanovic, Daniel Krommenhoek, John C. Bass, Saeid Ghamaty, Norbert Elsner