Patents by Inventor Daniel L. Stahlke

Daniel L. Stahlke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10915691
    Abstract: A semantic pattern extraction system can distill tremendous amounts of silicon wafer manufacturing data to generate a small set of simple sentences (semantic patterns) describing physical design geometries that may explain manufacturing defects. The system can analyze many SEM images for manufacturing defects in areas of interest on a wafer. A tagged continuous itemset is generated from the images, with items comprising physical design feature values corresponding to the areas of interest and tagged with the presence or absence of a manufacturing defect. Entropy-based discretization converts the continuous itemset into a discretized one. Frequent set mining identifies a set of candidate semantic patterns from the discretized itemset. Candidate semantic patterns are reduced using reduction techniques and are scored. A ranked list of final semantic patterns is presented to a user. The final semantic patterns can be used to improve a manufacturing process.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: February 9, 2021
    Assignee: Intel Corporation
    Inventors: Bikram Baidya, Vivek K. Singh, Allan Gu, Abde Ali Hunaid Kagalwalla, Saumyadip Mukhopadhyay, Kumara Sastry, Daniel L. Stahlke, Kritika Upreti
  • Publication number: 20190318059
    Abstract: A semantic pattern extraction system can distill tremendous amounts of silicon wafer manufacturing data to generate a small set of simple sentences (semantic patterns) describing physical design geometries that may explain manufacturing defects. The system can analyze many SEM images for manufacturing defects in areas of interest on a wafer. A tagged continuous itemset is generated from the images, with items comprising physical design feature values corresponding to the areas of interest and tagged with the presence or absence of a manufacturing defect. Entropy-based discretization converts the continuous itemset into a discretized one. Frequent set mining identifies a set of candidate semantic patterns from the discretized itemset. Candidate semantic patterns are reduced using reduction techniques and are scored. A ranked list of final semantic patterns is presented to a user. The final semantic patterns can be used to improve a manufacturing process.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Inventors: Bikram Baidya, Vivek K. Singh, Allan Gu, Abde Ali Hunaid Kagalwalla, Saumyadip Mukhopadhyay, Kumara Sastry, Daniel L. Stahlke, Kritika Upreti