Patents by Inventor Daniel L. Stein

Daniel L. Stein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190137450
    Abstract: Resonant acoustic gas sensors and methods for operating acoustic gas sensors that improve detection and reduce power consumption through the use of dynamic thresholds for identifying resonance peaks and optimizing searching for subsequent resonance peaks. The resonant acoustic gas sensors may use one or two separate transducers to produce the electronic signal that is filtered and used to identify the resonance peaks, using either voltage or impedance values to identify resonance peaks and use the resonance peaks to determine the composition of the gas mixture being measured.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 9, 2019
    Inventors: Stephen J. Willett, Erik A. Aho, Eric J. Alfuth, Benjamin P. Heppner, Richard L. Rylander, Benjamin K. Stein, Daniel A. Temple
  • Patent number: 9406789
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: August 2, 2016
    Assignees: NEW YORK UNIVERSITY, THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Patent number: 8760915
    Abstract: A high speed, low power method to control and switch the magnetization direction and/or helicity of a magnetic region in a magnetic device for memory cells using spin polarized electrical current. The magnetic device comprises a reference magnetic layer with a fixed magnetic helicity and/or magnetization direction and a free magnetic layer with a changeable magnetic helicity and/or magnetization direction. The fixed magnetic layer and the free magnetic layer are preferably separated by a non-magnetic layer. The fixed and free magnetic layers may have magnetization directions at a substantially non-zero angle relative to the layer normal. A current can be applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, is measured to read out the information stored in the device.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: June 24, 2014
    Assignee: New York University
    Inventors: Andrew Kent, Daniel L. Stein, Jean-Marc Beaujour
  • Publication number: 20130265099
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 10, 2013
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Patent number: 8492231
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: July 23, 2013
    Assignees: Arizona Board of Regents on behalf of the University of Arizona, New York University
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Publication number: 20120103792
    Abstract: A high speed and low power method to control and switch the magnetization direction and/or helicity of a magnetic region in a magnetic device for memory cells using spin polarized electrical current. The mapetic device comprises a reference magnetic layer with a fixed magnetic helicity and/or magnetization direction and a free magnetic layer with a changeable magnetic helicity and/or magnetization direction. The fixed magnetic layer and the free magnetic layer are preferably separated by a non-magnetic layer. The fixed and free magnetic layers may have magnetization directions at a substantially nonzero angle relative to the layer normal. A current can be applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, is measured to read out the information stored in the device.
    Type: Application
    Filed: March 4, 2011
    Publication date: May 3, 2012
    Inventors: Andrew Kent, Daniel L. Stein, Jean-Marc Beaujour
  • Publication number: 20110260775
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Application
    Filed: June 25, 2008
    Publication date: October 27, 2011
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Patent number: D628461
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: December 7, 2010
    Inventors: Daniel L. Stein, Jr., Cathy Stein