Patents by Inventor Daniel Larry Rhonehouse

Daniel Larry Rhonehouse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8995802
    Abstract: An IR supercontinuum source for generating supercontinuum in the MIR or possibly LWIR spectral bands comprises a supercontinuum fiber formed from a heavy metal oxide host glass having low optical loss and high non-linearity over the spectral band that is stable, strong and chemically durable. The supercontinuum fiber is suitably a depressed inner clad fiber configured to support only single transverse spatial mode propagation of the pump signal and supercontinuum. The source suitably includes a tapered depressed inner clad fiber to couple the pump signal into the supercontinuum fiber. The source may be configured as an “all-fiber” source.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: March 31, 2015
    Assignee: NP Photonics, Inc.
    Inventors: Arturo Chavez-Pirson, Daniel Larry Rhonehouse, Dan T. Nguyen
  • Publication number: 20150057142
    Abstract: An IR supercontinuum source for generating supercontinuum in the MIR or possibly LWIR spectral bands comprises a supercontinuum fiber formed from a heavy metal oxide host glass having low optical loss and high non-linearity over the spectral band that is stable, strong and chemically durable. The supercontinuum fiber is suitably a depressed inner clad fiber configured to support only single transverse spatial mode propagation of the pump signal and supercontinuum. The source suitably includes a tapered depressed inner clad fiber to couple the pump signal into the supercontinuum fiber. The source may be configured as an “all-fiber” source.
    Type: Application
    Filed: July 14, 2014
    Publication date: February 26, 2015
    Inventors: Arturo Chavez-Pirson, Daniel Larry Rhonehouse, Dan T. Nguyen
  • Patent number: 8818160
    Abstract: An IR supercontinuum source for generating supercontinuum in the MIR or possibly LWIR spectral bands comprises a supercontinuum fiber formed from a heavy metal oxide host glass having low optical loss and high non-linearity over the spectral band that is stable, strong and chemically durable. The supercontinuum fiber is suitably a depressed inner clad fiber configured to support only single transverse spatial mode propagation of the pump signal and supercontinuum. The source suitably includes a tapered depressed inner clad fiber to couple the pump signal into the supercontinuum fiber. The source may be configured as an “all-fiber” source.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: August 26, 2014
    Assignee: NP Photonics, Inc.
    Inventors: Arturo Chavez-Pirson, Daniel Larry Rhonehouse, Dan T. Nguyen
  • Patent number: 8805133
    Abstract: A tellurium oxide glass that is stable, strong and chemically durable exhibits low optical loss from the UV band well into the MIR band. Unwanted absorption mechanisms in the MIR band are removed or reduced so that the glass formulation exhibits optical performance as close as possible to the theoretical limit of a tellurium oxide glass. The glass formulation only includes glass constituents that provide the intermediate, modifiers and any halides (for OH— reduction) whose inherent absorption wavelength is longer than that of Tellurium (IV) oxide. The glass formulation is substantially free of Sodium Oxide and any other passive glass constituent including hydroxyl whose inherent absorption wavelength is shorter than that of Tellurium (IV) oxide. The glass formulation preferably includes only a small residual amount of halide.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: August 12, 2014
    Assignee: NP Photonics, Inc.
    Inventors: Daniel Larry Rhonehouse, Arturo Chavez-Pirson
  • Publication number: 20140205258
    Abstract: A tellurium oxide glass that is stable, strong and chemically durable exhibits low optical loss from the UV band well into the MIR band. Unwanted absorption mechanisms in the MIR band are removed or reduced so that the glass formulation exhibits optical performance as close as possible to the theoretical limit of a tellurium oxide glass. The glass formulation only includes glass constituents that provide the intermediate, modifiers and any halides (for OH— reduction) whose inherent absorption wavelength is longer than that of Tellurium (IV) oxide. The glass formulation is substantially free of Sodium Oxide and any other passive glass constituent including hydroxyl whose inherent absorption wavelength is shorter than that of Tellurium (IV) oxide. The glass formulation preferably includes only a small residual amount of halide.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 24, 2014
    Applicant: NP PHOTONICS, INC.
    Inventors: Daniel Larry Rhonehouse, Arturo Chavez-Pirson