Patents by Inventor Daniel Lidar

Daniel Lidar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11308400
    Abstract: An optimally stopped heuristic optimizer includes a processor. The processor heuristically generates a sequence of proposed solutions for solving a discrete optimization problem associated with an objective function, and for each additional proposed solution of the sequence, derives an estimate of a quality distribution that is based on the sequence including the additional proposed solution. The quality distribution assigns a probability to each of the proposed solutions according to quality of the proposed solution. The processor further, responsive to a most recent additional proposed solution of the sequence having quality better than a quality threshold that is defined by the estimate corresponding to the sequence including the most recent additional proposed solution, commands a stop such that further proposed solutions to the discrete optimization problem are no longer generated, and identifies and outputs a selected one of the sequence having best quality.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: April 19, 2022
    Assignee: University of Southern California
    Inventors: Daniel A. Lidar, Walter Vinci
  • Patent number: 10296352
    Abstract: Systems and methods of processing using a quantum processor are described. A method includes obtaining a problem Hamiltonian and defining a nested Hamiltonian with a plurality of logical qubits by embedding a logical KN representing the problem Hamiltonian into a larger KC×N, where N represents a number of the logical qubits and C represents a nesting level defining the amount of hardware resources for the nest Hamiltonian. The method also includes encoding the nested Hamiltonian into the plurality of physical qubits of the quantum processor; and performing a quantum annealing process with the quantum processor after the encoding.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: May 21, 2019
    Assignee: University of Southern California
    Inventors: Daniel Lidar, Tameem Albash, Walter Vinci
  • Publication number: 20190095799
    Abstract: An optimally stopped heuristic optimizer includes a processor. The processor heuristically generates a sequence of proposed solutions for solving a discrete optimization problem associated with an objective function, and for each additional proposed solution of the sequence, derives an estimate of a quality distribution that is based on the sequence including the additional proposed solution. The quality distribution assigns a probability to each of the proposed solutions according to quality of the proposed solution. The processor further, responsive to a most recent additional proposed solution of the sequence having quality better than a quality threshold that is defined by the estimate corresponding to the sequence including the most recent additional, proposed solution, commands a stop such that further proposed solutions to the discrete optimization problem are no longer generated, and identifies and outputs a selected one of the sequence having best quality.
    Type: Application
    Filed: August 20, 2018
    Publication date: March 28, 2019
    Inventors: Daniel A. Lidar, Walter Vinci
  • Publication number: 20170364362
    Abstract: Systems and methods of processing using a quantum processor are described. A method includes obtaining a problem Hamiltonian and defining a nested Hamiltonian with a plurality of logical qubits by embedding a logical KN representing the problem Hamiltonian into a larger KC×N, where N represents a number of the logical qubits and C represents a nesting level defining the amount of hardware resources for the nest Hamiltonian. The method also includes encoding the nested Hamiltonian into the plurality of physical qubits of the quantum processor; and performing a quantum annealing process with the quantum processor after the encoding.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 21, 2017
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Daniel LIDAR, Tameem ALBASH, Walter VINCI
  • Patent number: 7364923
    Abstract: A quantum computing method comprising constructing a dressing transformation V between a physical Hamiltonian H and an ideal Hamiltonian HID. The physical Hamiltonian H describes a physical quantum computer that comprises a plurality of qubits, including interactions between the plurality of qubits and a continuum. The ideal Hamiltonian HID describes the universal quantum computer that corresponds to the physical quantum computer. Each qubit in the plurality of qubits is initialized and quantum calculations are performed using the plurality of qubits. Measurement of the plurality of qubits is performed in the dressed state.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: April 29, 2008
    Assignee: The Governing Council of the University of Toronto
    Inventors: Daniel A. Lidar, Lian-Ao Wu
  • Patent number: 7307275
    Abstract: The present invention involves a quantum computing structure, comprising: one or more logical qubits, which is encoded into a plurality of superconducting qubits; and each of the logical qubits comprises at least one operating qubit and at least one ancilla qubit. Also provided is a method of quantum computing, comprising: performing encoded quantum computing operations with logical qubits that are encoded into superconducting operating qubits and superconducting ancilla qubits. The present invention further involves a method of error correction for a quantum computing structure comprising: presenting a plurality of logical qubits, each of which comprises an operating physical qubit and an ancilla physical qubit, wherein the logical states of the plurality of logical qubits are formed from a tensor product of the states of the operating and ancilla qubits; and wherein the states of the ancilla physical qubits are suppressed; and applying strong pulses to the grouping of logical qubits.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: December 11, 2007
    Assignees: D-Wave Systems Inc., The University of Toronto
    Inventors: Daniel Lidar, Lian-Ao Wu, Alexandre Blais
  • Patent number: 7184555
    Abstract: The invention includes systems for and methods of performing quantum computation. The method of quantum computation includes preparing a set of one or more qubits capable of storing quantum information in 2n possible states, wherein the number of qubits n?1. The qubit set is subject to a decoherence mechanism that could cause a loss of quantum information stored in some but not all of the qubit states. The method also includes determining, via a quantum measurement of the qubit system or just by analyzing the decoherence of the qubit states, which of the 2n states or their superposition is/are not susceptible to decoherence. The method further includes encoding and processing quantum information in one or more of the decoherence-free states by controlling qubit-qubit interactions or via an electromagnetic interaction with the set of qubits.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: February 27, 2007
    Assignee: Magiq Technologies, Inc.
    Inventors: K. Birgit Whaley, Daniel A. Lidar, Julia Kempe, David Bacon
  • Patent number: 7018852
    Abstract: A method for performing a single-qubit gate on an arbitrary quantum state. An ancillary qubit is set to an initial state |I>. The data qubit is coupled to an ancillary qubit. The state of the ancillary qubit is measured, and the data qubit and the ancillary qubit are coupled for a first period of time. A method for applying a single-qubit gate to an arbitrary quantum state. A state of a first and second ancillary qubit are set to an entangled initial state |I>. A state of a data qubit and the first ancillary qubit are measured thereby potentially performing a single qubit operation on the arbitrary quantum state. A first result is determined. The first result indicates whether the single qubit operation applied the single qubit gate to the arbitrary quantum state.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: March 28, 2006
    Assignees: D-Wave Systems, Inc., The Governing Council of the University of Toronto
    Inventors: Lian-Ao Wu, Daniel Lidar, Alexandre Blais
  • Publication number: 20040238813
    Abstract: A quantum computing method comprising constructing a dressing transformation V between a physical Hamiltonian H and an ideal Hamiltonian HID. The physical Hamiltonian H describes a physical quantum computer that comprises a plurality of qubits, including interactions between the plurality of qubits and a continuum. The ideal Hamiltonian HID describes the universal quantum computer that corresponds to the physical quantum computer. Each qubit in the plurality of qubits is initialized and quantum calculations are performed using the plurality of qubits. Measurement of the plurality of qubits is performed in the dressed state.
    Type: Application
    Filed: February 27, 2004
    Publication date: December 2, 2004
    Applicant: D-Wave Systems, Inc.
    Inventors: Daniel A. Lidar, Lian-Ao Wu
  • Publication number: 20040000666
    Abstract: The present invention involves a quantum computing structure, comprising: one or more logical qubits, which is encoded into a plurality of superconducting qubits; and each of the logical qubits comprises at least one operating qubit and at least one ancilla qubit. Also provided is a method of quantum computing, comprising: performing encoded quantum computing operations with logical qubits that are encoded into superconducting operating qubits and superconducting ancilla qubits. The present invention further involves a method of error correction for a quantum computing structure comprising: presenting a plurality of logical qubits, each of which comprises an operating physical qubit and an ancilla physical qubit, wherein the logical states of the plurality of logical qubits are formed from a tensor product of the states of the operating and ancilla qubits; and wherein the states of the ancilla physical qubits are suppressed; and applying strong pulses to the grouping of logical qubits.
    Type: Application
    Filed: April 4, 2003
    Publication date: January 1, 2004
    Inventors: Daniel Lidar, Lian-Ao Wu, Alexandre Blais
  • Publication number: 20030023651
    Abstract: The invention provides a system and method for quantum computation comprising the steps of defining a Hilbert space to represent a physical quantum mechanical system; selecting a set of quantum observables for said system; selecting a subspace of said Hilbert space in which all states representing said quantum mechanical system have the same eigenvalue; and storing information in or processing information using said subspace. In addition, the invention provides a system and method for quantum computation, comprising defining a Hilbert space to represent a physical quantum mechanical system; selecting a subspace of said Hilbert space in which the quantum mechanical state of the physical system is decoherence free; and processing quantum information using the quantum mechanical system by controlling only multi body interactions.
    Type: Application
    Filed: April 10, 2002
    Publication date: January 30, 2003
    Inventors: K. Birgit Whaley, Daniel A. Lidar, Julia Kempe, David Bacon