Patents by Inventor Daniel M. Meiser

Daniel M. Meiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11237003
    Abstract: An image-based navigation system is arranged to obtain a terrain image of a target terrain from one or more image sensors at a low altitude imaging location. The terrain image includes at least one celestial image feature and at least one terrain feature. Map database information stored in at least one hardware memory device is accessed and compared to the at least one celestial image feature and the at least one terrain feature in the terrain image to determine absolute location coordinates of the imaging location.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: February 1, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Benjamin F. Lane, Daniel M. Meiser, Eric T. Hoke, Matthew T. Jamula, Robin M. A. Dawson, Stephen P. Smith
  • Patent number: 10935381
    Abstract: Methods and apparatus automatically determine a location, such as of an aircraft or spacecraft, by matching images of terrain below the craft, as captured by a camera, radar, etc. in the craft, with known or predicted terrain landmark data stored in an electronic data store. A star tracker measures attitude of the camera. An additional navigation aiding sensor provides additional navigational data. Optionally, a rangefinder measures altitude of the camera above the terrain. A navigation filter uses the attitude, the additional navigational data, and optionally the altitude, to resolve attitude, and optionally altitude, ambiguities and thereby avoid location solution errors common in prior art terrain matching navigation systems.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 2, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Matthew T. Jamula, Paul A. Bohn, Robin Mark Adrian Dawson, Benjamin F. Lane, Eric T. Hoke, Daniel M. Meiser, Joseph M. Kinast, Stephen P. Smith
  • Publication number: 20200300634
    Abstract: An image-based navigation system is arranged to obtain a terrain image of a target terrain from one or more image sensors at a low altitude imaging location. The terrain image includes at least one celestial image feature and at least one terrain feature. Map database information stored in at least one hardware memory device is accessed and compared to the at least one celestial image feature and the at least one terrain feature in the terrain image to determine absolute location coordinates of the imaging location.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 24, 2020
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Benjamin F. Lane, Daniel M. Meiser, Eric T. Hoke, Matthew T. Jamula, Robin M. A. Dawson, Stephen P. Smith
  • Patent number: 10724871
    Abstract: A visual navigation system includes a compass configured to orient a user in a heading direction, an image sensor configured to capture a series of successive navigation images in the heading direction, one or more of the navigation images having at least two reference markers, data storage memory configured to store the series of successive navigation images, a navigation processor configured to identify at least one principal marker and at least one ancillary marker from the at least two reference markers, the principal marker positioned within a principal angle and the ancillary marker positioned within an ancillary angle, which is greater than the principal angle, and to determine heading direction information based on a position of the at least one principal marker and/or the at least one ancillary marker in the successive navigation images, and a user interface configured to provide the heading direction information to the user.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: July 28, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Simone B. Bortolami, Jeffrey Korn, Gregory P. Blasche, Matthew T. Jamula, Paul A. Bohn, Robin Mark Adrian Dawson, Benjamin F. Lane, Eric T. Hoke, Daniel M. Meiser, Joseph M. Kinast, Timothy J. McCarthy, Stephen P. Smith
  • Patent number: 10641859
    Abstract: A star tracker includes a lens slice, a pixelated image sensor, an ephemeral database and a processor configured to estimate attitude, orientation and/or location of the star tracker based on an image of one or more celestial objects projected by the lens slice onto the pixelated image sensor. The lens slice is smaller and lighter than an optically comparable conventional lens, thereby making the star tracker less voluminous and less massive than conventional star trackers. A lens slice is elongated along one axis. Optical performance along the elongation axis is comparable to that of a conventional circular lens of equal diameter. Although optical performance along a width axis, perpendicular to the elongation axis, of a lens slice can be significantly worse than that of a conventional lens, use of two orthogonal lens slices provides adequate optical performance in both axes, and still saves volume and mass over a conventional lens.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: May 5, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Robin Mark Adrian Dawson, Daniel M. Meiser, Benjamin F. Lane, Eric T. Hoke, Matthew T. Jamula, Stephen P. Smith, Matthew A. Sinclair
  • Publication number: 20190033421
    Abstract: A star tracker includes a lens slice, a pixelated image sensor, an ephemeral database and a processor configured to estimate attitude, orientation and/or location of the star tracker based on an image of one or more celestial objects projected by the lens slice onto the pixelated image sensor. The lens slice is smaller and lighter than an optically comparable conventional lens, thereby making the star tracker less voluminous and less massive than conventional star trackers. A lens slice is elongated along one axis. Optical performance along the elongation axis is comparable to that of a conventional circular lens of equal diameter. Although optical performance along a width axis, perpendicular to the elongation axis, of a lens slice can be significantly worse than that of a conventional lens, use of two orthogonal lens slices provides adequate optical performance in both axes, and still saves volume and mass over a conventional lens.
    Type: Application
    Filed: July 27, 2017
    Publication date: January 31, 2019
    Inventors: Juha-Pekka J. Laine, Robin Mark Adrian Dawson, Daniel M. Meiser, Benjamin F. Lane, Eric T. Hoke, Matthew T. Jamula, Stephen P. Smith, Matthew A. Sinclair
  • Publication number: 20180313651
    Abstract: Methods and apparatus automatically determine a location, such as of an aircraft or spacecraft, by matching images of terrain below the craft, as captured by a camera, radar, etc. in the craft, with known or predicted terrain landmark data stored in an electronic data store. A star tracker measures attitude of the camera. An additional navigation aiding sensor provides additional navigational data. Optionally, a rangefinder measures altitude of the camera above the terrain. A navigation filter uses the attitude, the additional navigational data, and optionally the altitude, to resolve attitude, and optionally altitude, ambiguities and thereby avoid location solution errors common in prior art terrain matching navigation systems.
    Type: Application
    Filed: June 27, 2018
    Publication date: November 1, 2018
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Matthew T. Jamula, Paul A. Bohn, Robin Mark Adrian Dawson, Benjamin F. Lane, Eric T. Hoke, Daniel M. Meiser, Joseph M. Kinast, Stephen P. Smith
  • Publication number: 20180238690
    Abstract: An image-based navigation system is arranged to obtain a terrain image of a target terrain from one or more image sensors at a low altitude imaging location. The terrain image includes at least one celestial image feature and at least one terrain feature. Map database information stored in at least one hardware memory device is accessed and compared to the at least one celestial image feature and the at least one terrain feature in the terrain image to determine absolute location coordinates of the imaging location.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 23, 2018
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Benjamin F. Lane, Daniel M. Meiser, Eric T. Hoke, Matthew T. Jamula, Robin M. A. Dawson, Stephen P. Smith
  • Patent number: 10048084
    Abstract: Methods and apparatus automatically determine a location, such as of an aircraft or spacecraft, by matching images of terrain below the craft, as captured by a camera, radar, etc. in the craft, with known or predicted terrain landmark data stored in an electronic data store. A star tracker measures attitude of the camera. Optionally, a rangefinder measures altitude of the camera above the terrain. A navigation filter uses the attitude, and optionally the altitude, to resolve attitude, and optionally altitude, ambiguities and thereby avoid location solution errors common in prior art terrain matching navigation systems.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: August 14, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Matthew T. Jamula, Paul A. Bohn, Robin Mark Adrian Dawson, Benjamin F. Lane, Eric T. Hoke, Daniel M. Meiser, Joseph M. Kinast, Stephen P. Smith
  • Publication number: 20180120122
    Abstract: A visual navigation system includes a compass configured to orient a user in a heading direction, an image sensor configured to capture a series of successive navigation images in the heading direction, one or more of the navigation images having at least two reference markers, data storage memory configured to store the series of successive navigation images, a navigation processor configured to identify at least one principal marker and at least one ancillary marker from the at least two reference markers, the principal marker positioned within a principal angle and the ancillary marker positioned within an ancillary angle, which is greater than the principal angle, and to determine heading direction information based on a position of the at least one principal marker and/or the at least one ancillary marker in the successive navigation images, and a user interface configured to provide the heading direction information to the user.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 3, 2018
    Inventors: Juha-Pekka J. Laine, Simone B. Bortolami, Jeffrey Korn, Gregory P. Blasche, Matthew T. Jamula, Paul A. Bohn, Robin Mark Adrian Dawson, Benjamin F. Lane, Eric T. Hoke, Daniel M. Meiser, Joseph M. Kinast, Timothy J. McCarthy, Stephen P. Smith
  • Publication number: 20180080787
    Abstract: Methods and apparatus automatically determine a location, such as of an aircraft or spacecraft, by matching images of terrain below the craft, as captured by a camera, radar, etc. in the craft, with known or predicted terrain landmark data stored in an electronic data store. A star tracker measures attitude of the camera. Optionally, a rangefinder measures altitude of the camera above the terrain. A navigation filter uses the attitude, and optionally the altitude, to resolve attitude, and optionally altitude, ambiguities and thereby avoid location solution errors common in prior art terrain matching navigation systems.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Matthew T. Jamula, Paul A. Bohn, Robin Mark Adrian Dawson, Benjamin F. Lane, Eric T. Hoke, Daniel M. Meiser, Joseph M. Kinast, Stephen P. Smith