Patents by Inventor Daniel M. TRIETSCH

Daniel M. TRIETSCH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240023830
    Abstract: In one implementation, a method is performed for tiered posture awareness. The method includes: while presenting a three-dimensional (3D) environment, via the display device, obtaining head pose information for a user associated with the computing system; determining an accumulated strain value for the user based on the head pose information; and in accordance with a determination that the accumulated strain value for the user exceeds a first posture awareness threshold: determining a location for virtual content based on a height value associated with the user and a depth value associated with the 3D environment; and presenting, via the display device, the virtual content at the determined location while continuing to present the 3D environment via the display device.
    Type: Application
    Filed: May 22, 2023
    Publication date: January 25, 2024
    Inventors: Thomas G. Salter, Adeeti V. Ullal, Alexander G. Bruno, Daniel M. Trietsch, Edith M. Arnold, Edwin Iskandar, Ioana Negoita, James J. Dunne, Johahn Y. Leung, Karthik Jayaraman Raghuram, Matthew S. DeMers, Thomas J. Moore
  • Publication number: 20230377480
    Abstract: In some implementations, a method includes: while presenting a 3D environment, obtaining user profile and head pose information for a user; determining locations for visual cues within the 3D environment for a first portion of a guided stretching session based on the user profile and head pose information; presenting the visual cues at the determined locations within the 3D environment and a directional indicator; and in response to detecting a change to the head pose information: updating a location for the directional indicator based on the change to the head pose information; and in accordance with a determination that the change to the head pose information satisfies a criterion associated with a first visual cue among the visual cues, providing at least one of audio, haptic, or visual feedback indicating that the first visual cue has been completed for the first portion of the guided stretching session.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 23, 2023
    Inventors: James J. Dunne, Adeeti V. Ullal, Alexander G. Bruno, Daniel M. Trietsch, Ioana Negoita, Irida Mance, Matthew S. DeMers, Thomas G. Salter
  • Patent number: 10709933
    Abstract: A method and a system for determining an energy expenditure of a user while practicing yoga are described. A heart rate sensing module can measure the user's heart rate. A temperature sensing module can measure ambient temperature. A motion sensing module can collect user's motion data. In some embodiments, a hot yoga session can be detected based on measured ambient temperature. In some embodiments, a yoga type can be detected based on the motion data. In some embodiments, an energy expenditure model can be applied based on the determined yoga type.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: July 14, 2020
    Assignee: Apple Inc.
    Inventors: Xing Tan, Karthik Jayaraman Raghuram, Adeeti Ullal, Craig H. Mermel, Daniel M. Trietsch, Alexander Singh Alvarado
  • Patent number: 10699594
    Abstract: Improved techniques and systems are disclosed for determining the components of resistance experienced by a wearer of a wearable device engaged in an activity such as bicycling or running. By monitoring data using the wearable device, improved estimates can be derived for various factors contributing to the resistance experienced by the user in the course of the activity. Using these improved estimates, data sampling rates may be reduced for some or all of the monitored data.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: June 30, 2020
    Assignee: APPLE INC.
    Inventors: Craig H. Mermel, Alexander Singh Alvarado, Daniel M. Trietsch, Hung A. Pham, Karthik Jayaraman Raghuram, Richard Channing Moore, III
  • Patent number: 10650699
    Abstract: Improved techniques and systems are disclosed for determining the components of resistance experienced by a wearer of a wearable device engaged in an activity such as bicycling or running. By monitoring data using the wearable device, improved estimates can be derived for various factors contributing to the resistance experienced by the user in the course of the activity. Using these improved estimates, data sampling rates may be reduced for some or all of the monitored data.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: May 12, 2020
    Assignee: APPLE INC.
    Inventors: Craig H. Mermel, Alexander Singh Alvarado, Daniel M. Trietsch, Hung A. Pham, Karthik Jayaraman Raghuram, Richard Channing Moore, III
  • Publication number: 20180050235
    Abstract: A method and a system for determining an energy expenditure of a user while practicing yoga are described. A heart rate sensing module can measure the user's heart rate. A temperature sensing module can measure ambient temperature. A motion sensing module can collect user's motion data. In some embodiments, a hot yoga session can be detected based on measured ambient temperature. In some embodiments, a yoga type can be detected based on the motion data. In some embodiments, an energy expenditure model can be applied based on the determined yoga type.
    Type: Application
    Filed: August 17, 2017
    Publication date: February 22, 2018
    Applicant: Apple Inc.
    Inventors: Xing Tan, Karthik Jayaraman Raghuram, Adeeti Ullal, Craig H. Mermel, Daniel M. Trietsch, Alexander Singh Alvarado
  • Publication number: 20170074897
    Abstract: Improved techniques and systems are disclosed for determining the components of resistance experienced by a wearer of a wearable device engaged in an activity such as bicycling or running. By monitoring data using the wearable device, improved estimates can be derived for various factors contributing to the resistance experienced by the user in the course of the activity. Using these improved estimates, data sampling rates may be reduced for some or all of the monitored data.
    Type: Application
    Filed: September 14, 2016
    Publication date: March 16, 2017
    Inventors: Craig H. MERMEL, Alexander SINGH ALVARADO, Daniel M. TRIETSCH, Hung A. PHAM, Karthik Jayaraman RAGHURAM, Richard Channing MOORE, III