Patents by Inventor Daniel Massimini

Daniel Massimini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230338088
    Abstract: A catheter system (100) for treating a treatment site (106) within or adjacent to a blood vessel (108) includes a power source (124), a light guide (122) and a plasma target (242). In various embodiments, the light guide (122) receives power from the power source (124). The light guide (122) has a distal tip (244), and the light guide (122) emits light energy (243) in a direction away from the distal tip (244). The plasma target (242) is spaced apart from the distal tip (244) of the light guide (122) by a target gap distance (245). The plasma target (242) is configured to receive light energy (243) from the light guide (122) so that a plasma bubble (234) is generated at the plasma target (242). The power source (124) can be a laser and the light guide (122) can be an optical fiber. The catheter system (100) can also an inflatable balloon (104) that encircles the distal tip (244) of the light guide (122). The plasma target (242) can be positioned within the inflatable balloon (104).
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Inventors: Daniel Massimini, Roger McGowan, Haiping Shao, Christopher A. Cook
  • Patent number: 11717139
    Abstract: A catheter system for treating a treatment site within or adjacent to a blood vessel includes a power source, a light guide and a plasma target. In various embodiments, the light guide receives power from the power source. The light guide has a distal tip, and the light guide emits light energy in a direction away from the distal tip. The plasma target is spaced apart from the distal tip of the light guide by a target gap distance. The plasma target is configured to receive light energy from the light guide so that a plasma bubble is generated at the plasma target. The power source can be a laser and the light guide can be an optical fiber. In certain embodiments, the catheter system can also an inflatable balloon that encircles the distal tip of the light guide. The plasma target can be positioned within the inflatable balloon. The target gap distance can be greater than 1 ?m. The plasma target can have a target face that receives the light energy from the light guide.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: August 8, 2023
    Assignees: Bolt Medical, Inc., Boston Scientific Scimed, Inc.
    Inventors: Daniel Massimini, Roger McGowan, Haiping Shao, Christopher A. Cook
  • Publication number: 20210275249
    Abstract: A catheter system includes a power source, a controller, and a light guide. The power source generates a plurality of energy pulses. The controller controls the power source so that the plurality of energy pulses cooperate to produce a composite energy pulse having a composite pulse shape. The light guide receives the composite energy pulse. The light guide emits light energy in a direction away from the light guide to generate a plasma pulse away from the light guide. The power source can be a laser and the light guide can be an optical fiber. Each of the energy pulses has a pulse width, and the energy pulses are added to one another so that the composite energy pulse has a pulse width that is longer than the pulse width of any one of the energy pulses. At least two of the energy pulses can have the same wavelength as or a different wavelength from one another.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 9, 2021
    Inventors: Daniel Massimini, Roger McGowan, Haiping Shao, Christopher A. Cook
  • Publication number: 20200397230
    Abstract: A catheter system for treating a treatment site within or adjacent to a blood vessel includes a power source, a light guide and a plasma target. In various embodiments, the light guide receives power from the power source. The light guide has a distal tip, and the light guide emits light energy in a direction away from the distal tip. The plasma target is spaced apart from the distal tip of the light guide by a target gap distance. The plasma target is configured to receive light energy from the light guide so that a plasma bubble is generated at the plasma target. The power source can be a laser and the light guide can be an optical fiber. In certain embodiments, the catheter system can also an inflatable balloon that encircles the distal tip of the light guide. The plasma target can be positioned within the inflatable balloon. The target gap distance can be greater than 1 ?m. The plasma target can have a target face that receives the light energy from the light guide.
    Type: Application
    Filed: May 14, 2020
    Publication date: December 24, 2020
    Inventors: Daniel Massimini, Roger McGowan, Haiping Shao, Christopher A. Cook