Patents by Inventor Daniel McAda

Daniel McAda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230365924
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 16, 2023
    Inventors: Frederick Savage, David Appleyard, Zheng Xia, Matthew D. Ebersole, Daniel McAda
  • Patent number: 11753620
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: September 12, 2023
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Publication number: 20230082674
    Abstract: A method of choosing which undesired cell to destroy in a multi-cell fluorescent event includes detecting fluorescence of cells, converting photons detected in the fluorescence into an analog voltage output signal, and identifying at least two discernable peaks associated with the cells. By looking solely at properties measured within the multi-cell fluorescent event, a decision of which cell to target for elimination can be made. Using this method with large population sizes can result in an effective sex skewed product. The sex skewed product can, for example, be formed from bull semen which is then later used to inseminate cows which results in an increased likelihood of giving birth to female cattle.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 16, 2023
    Inventors: Frederick Savage, Matthew D. Ebersole, Daniel McAda, David Appleyard, Zheng Xia
  • Patent number: 11513114
    Abstract: A method of choosing which undesired cell to destroy in a multi-cell fluorescent event includes detecting fluorescence of cells, converting photons detected in the fluorescence into an analog voltage output signal, and identifying at least two discernable peaks associated with the cells. By looking solely at properties measured within the multi-cell fluorescent event, a decision of which cell to target for elimination can be made. Using this method with large population sizes can result in an effective sex skewed product. The sex skewed product can, for example, be formed from bull semen which is then later used to inseminate cows which results in an increased likelihood of giving birth to female cattle.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 29, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Matthew Ebersole, Daniel McAda, David Appleyard, Zheng Xia
  • Publication number: 20220348865
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: Frederick Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Publication number: 20220297121
    Abstract: Disclosed is an approach to differentiating between different particle types in samples flowing through microfluidics chips. A sample may have an initial proportion of a first cell type to a second cell type. An illuminating light source may emit a coherent light at the sample, and light leaving the chip in a first direction may be detected using a first light detector, and light leaving the chip in a second direction (e.g., orthogonal to the first direction) may be detected using a second light detector. The detected light may be fluorescence. An orientational feature of a plurality of cells in the sample may be determined based on the light detected by the detectors. Based on the orientational features and the detected light, a biasing operation may be performed for each cell in the sample to obtain a modified proportion of cell types in the sample.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 22, 2022
    Inventors: David Appleyard, Daniel McAda, Zheng Xia, James Maxwell Schiller, Frederick Savage, John Walker Rupel, II, Timothy Miller, Alec Fisher
  • Patent number: 11427804
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: August 30, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Hershel Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Publication number: 20220163438
    Abstract: Modular flow cytometry systems and methods for processing samples are described herein. The systems include automated or semi-automated modules that are replaceable and removable. A sample pathway module may be removed and placed in a microfluidic device cleaning module for cleaning, and then reinstalled or stored for later use. The systems further include optical modules, electronics modules, and mixing and collection modules. The optical module includes a photo-damaging assembly and detection laser assembly that may be on the same side relative to a plane or surface of a flow cytometry device and opposite of a detection assembly. The laser beam may have a beam waist that is wider in a direction perpendicular to a flow direction than in the flow direction. The mixing and collection module can automatically mix a sample being collected in a sample tube and switch to another sample tube when the other tube is full.
    Type: Application
    Filed: November 12, 2021
    Publication date: May 26, 2022
    Inventors: Gary Klas, Daniel McAda, Zheng Xia, Matthew Ebersole, Brian Lena, David Appleyard, Richard Lu, Scott Buckley, Mark Abermoske
  • Publication number: 20200378953
    Abstract: A method of choosing which undesired cell to destroy in a multi-cell fluorescent event includes detecting fluorescence of cells, converting photons detected in the fluorescence into an analog voltage output signal, and identifying at least two discernable peaks associated with the cells. By looking solely at properties measured within the multi-cell fluorescent event, a decision of which cell to target for elimination can be made. Using this method with large population sizes can result in an effective sex skewed product. The sex skewed product can, for example, be formed from bull semen which is then later used to inseminate cows which results in an increased likelihood of giving birth to female cattle.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 3, 2020
    Inventors: Frederick Savage, Matthew Ebersole, Daniel McAda, David Appleyard, Zheng Xia
  • Publication number: 20190382720
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 19, 2019
    Inventors: Frederick Hershel Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda