Patents by Inventor Daniel Meisel

Daniel Meisel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11012789
    Abstract: A MEMS microphone includes a substrate, a lower membrane supported on the substrate, an upper membrane suspended above the lower membrane, a first electrode supported on the lower membrane, and a second electrode supported on the upper membrane. The lower membrane and the upper membrane enclose a cavity in which the first electrode and the second electrode are located. The lower membrane and the upper membrane are each formed of silicon carbonitride (SiCN). The first electrode and the second electrode are each formed of polysilicon.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: May 18, 2021
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventors: Christoph Hermes, Bernhard Gehl, Arnim Hoechst, Daniel Meisel, Andrew Doller, Yujie Zhang, Gokhan Hatipoglu
  • Patent number: 10972821
    Abstract: A MEMS microphone system comprises a transducer die having a pierce-less diaphragm and a motion sensor suspended from the diaphragm. The system further comprises a housing and the diaphragm divided a volume inside the housing into a front volume and a back volume. The motion sensor suspended from the diaphragm is located in the back volume having a gas pressure that is substantially equal or lower than an ambient pressure.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: April 6, 2021
    Assignee: Robert Bosch LLC
    Inventors: Daniel Meisel, Andrew Doller
  • Publication number: 20200112779
    Abstract: A MEMS microphone system comprises a transducer die having a pierce-less diaphragm and a motion sensor suspended from the diaphragm. The system further comprises a housing and the diaphragm divided a volume inside the housing into a front volume and a back volume. The motion sensor suspended from the diaphragm is located in the back volume having a gas pressure that is substantially equal or lower than an ambient pressure.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 9, 2020
    Inventors: Daniel Meisel, Andrew Doller
  • Patent number: 10555090
    Abstract: A MEMS microphone system with encapsulated movable electrode is provided. The MEMS microphone system comprises a MEMS sensor having an access channel, a plug, and first and second members. The access channel configured to receive the plug is formed on at least one of the first and second member. A vacuum having a pressure different from a pressure outside the MEMS sensor is formed between the first and second members.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: February 4, 2020
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventors: Jochen Reinmuth, Vijaye Rajaraman, Daniel Meisel, Bernhard Gehl
  • Patent number: 10555088
    Abstract: A microphone system includes first diaphragm element, second diaphragm element spaced apart from the first diaphragm element and connected to the first diaphragm element via a spacer. Disposed between the diaphragm elements is a plate capacitor element.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: February 4, 2020
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventors: Daniel Meisel, Bernhard Gehl, Yujie Zhang, Andrew Doller, Gokhan Hatipoglu
  • Patent number: 10448132
    Abstract: A MEMS microphone system comprises a transducer die having a pierce-less diaphragm and a motion sensor suspended from the diaphragm. The system further comprises a housing and the diaphragm divided a volume inside the housing into a front volume and a back volume. The motion sensor suspended from the diaphragm is located in the back volume having a gas pressure that is substantially equal or lower than an ambient pressure.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: October 15, 2019
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventors: Daniel Meisel, Andrew Doller
  • Publication number: 20190098418
    Abstract: A MEMS microphone includes a substrate, a lower membrane supported on the substrate, an upper membrane suspended above the lower membrane, a first electrode supported on the lower membrane, and a second electrode supported on the upper membrane. The lower membrane and the upper membrane enclose a cavity in which the first electrode and the second electrode are located. The lower membrane and the upper membrane are each formed of silicon carbonitride (SiCN). The first electrode and the second electrode are each formed of polysilicon.
    Type: Application
    Filed: June 28, 2018
    Publication date: March 28, 2019
    Inventors: Christoph Hermes, Bernhard Gehl, Arnim Hoechst, Daniel Meisel, Andrew Doller, Yujie Zhang, Gokhan Hatipoglu
  • Publication number: 20190007759
    Abstract: A MEMS microphone system comprises a transducer die having a pierce-less diaphragm and a motion sensor suspended from the diaphragm. The system further comprises a housing and the diaphragm divided a volume inside the housing into a front volume and a back volume. The motion sensor suspended from the diaphragm is located in the back volume having a gas pressure that is substantially equal or lower than an ambient pressure.
    Type: Application
    Filed: February 7, 2018
    Publication date: January 3, 2019
    Inventors: Daniel Meisel, Andrew Doller
  • Publication number: 20180352341
    Abstract: A MEMS microphone system with encapsulated movable electrode is provided. The MEMS microphone system comprises a MEMS sensor having an access channel, a plug, and first and second members. The access channel configured to receive the plug is formed on at least one of the first and second member. A vacuum having a pressure different from a pressure outside the MEMS sensor is formed between the first and second members.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 6, 2018
    Inventors: Jochen Reinmuth, Vijaye Rajaraman, Daniel Meisel, Bernhard Gehl
  • Publication number: 20180146296
    Abstract: A microphone system includes first diaphragm element, second diaphragm element spaced apart from the first diaphragm element and connected to the first diaphragm element via a spacer. Disposed between the diaphragm elements is a plate capacitor element.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Daniel Meisel, Bernhard Gehl, Yujie Zhang, Andrew Doller, Gokhan Hatipoglu
  • Patent number: 7407737
    Abstract: The invention relates to a method for producing a large variety of photoresist structures, wherein a volume of photosensitive material (5) is exposed at least once by means of at least two light beams (1, 2), which are superposed inside the photosensitive material (5), and is subsequently subjected to a developing process, wherein the light beams (1, 2) penetrate at least one transparent optical element (3). The optical element (3) is a polyhedron with planar or curved surfaces which largely prevents refraction of the light beams on the surface of the volume of photosensitive material (5) when the beams are fed-in and/or fed-out of the volume of photosensitive material (5), so that the angle of refraction for the light beams (1, 2) can be greater in the volume of photosensitive material (5) than the critical angle of the total reflection, which has a limiting effect without optical element (3).
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: August 5, 2008
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Daniel Meisel, Iouri Mikliaev, Martin Wegener
  • Publication number: 20060154178
    Abstract: The invention relates to a method for producing a large variety of photoresist structures, wherein a volume of photosensitive material (5) is exposed at least once by means of at least two light beams (1, 2), which are superposed inside the photosensitive material (5), and is subsequently subjected to a developing process, wherein the light beams (1, 2) penetrate at least one transparent optical element (3). The optical element (3) is a polyhedron with planar or curved surfaces which largely prevents refraction of the light beams on the surface of the volume of photosensitive material (5) when the beams are fed-in and/or fed-out of the volume of photosensitive material (5), so that the angle of refraction for the light beams (1, 2) can be greater in the volume of photosensitive material (5) than the critical angle of the total reflection, which has a limiting effect without optical element (3).
    Type: Application
    Filed: July 18, 2003
    Publication date: July 13, 2006
    Inventors: Daniel Meisel, Iouri Mikliev, Martin Wegener