Patents by Inventor Daniel Michael Leo

Daniel Michael Leo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180332788
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated aeroponic farming superstructure systems (AFSS) may be used to produce plants for human consumption with minimal water and environmental impact. An AFSS system may comprise modules including liquid distribution and plant growing. An AFSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Application
    Filed: May 20, 2017
    Publication date: November 22, 2018
    Inventor: Daniel Michael Leo
  • Publication number: 20180332786
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated aeroponic farming superstructure systems (AFSS) may be used to produce plants for human consumption with minimal water and environmental impact. An AFSS system may comprise modules including liquid distribution and plant growing. An AFSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Application
    Filed: May 20, 2017
    Publication date: November 22, 2018
    Inventor: Daniel Michael Leo
  • Patent number: 10099200
    Abstract: A liquid fuel product system is configured to produce liquid fuels from carbonaceous materials. The liquid fuel product system includes a plurality of feedstock delivery systems, a plurality of first stage product gas generation systems, a plurality of second stage product gas generation systems, a plurality of third stage product gas generation systems, a primary gas clean-up system, a compression system, a secondary gas clean-up system, and a synthesis system that includes one or more from the group consisting of ethanol, mixed alcohols, methanol, dimethyl ether, and Fischer-Tropsch products.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: October 16, 2018
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Dave G. Newport, Daniel A. Burciaga, Daniel Michael Leo, Justin Kevin Miller, Kaitlin Emily Harrington, Brian Christopher Attwood
  • Publication number: 20180290094
    Abstract: A solids discharge system (SDS) is configured to separate solids from product gas. The system includes a solids separation device and at least one solids transfer conduit configured to receive solids from the solids separation device. The solids transfer conduit is selectively partitioned into a plurality of compartments (or “sections”) along its length by isolation valves. A gas supply conduit and a gas discharge conduits are connected to one of the sections to facilitate removal of solids. A filter in fluid communication with that section is configured to prevent solids from passing through the gas discharge conduit so that the solids can be removed from one of the sections of the solids transfer conduit. A product gas generation system incorporates first and second reactors, the latter of which receives products created by the second reactor.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Applicant: ThermoChem Recovery International, Inc.
    Inventors: RAVI CHANDRAN, Dave G. NEWPORT, Daniel Michael LEO, Daniel A. BURCIAGA, Justin Kevin MILLER, Kaitlin Emily HARRINGTON, Brian Christopher ATTWOOD, Emily Jane SCHULTHEIS, Kelly Ann KISHTON
  • Patent number: 10076104
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated Insect Production Superstructure Systems (IPSS) may be used to produce insects for human and animal consumption, and for the extraction and use of lipids for applications involving medicine, nanotechnology, consumer products, and chemical production with minimal water, feedstock, and environmental impact. An IPSS may comprise modules including feedstock mixing, enhanced feedstock splitting, insect feeding, insect breeding, insect collection, insect grinding, pathogen removal, multifunctional flour mixing, and lipid extraction. An IPSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 18, 2018
    Inventor: Daniel Michael Leo
  • Patent number: 10065858
    Abstract: A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: September 4, 2018
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Hamilton Sean Michael Whitney, Daniel A. Burciaga
  • Patent number: 10058080
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated Insect Production Superstructure Systems (IPSS) may be used to produce insects for human and animal consumption, and for the extraction and use of lipids for applications involving medicine, nanotechnology, consumer products, and chemical production with minimal water, feedstock, and environmental impact. An IPSS may comprise modules including feedstock mixing, feedstock splitting, insect feeding, insect breeding, insect collection, insect grinding, pathogen removal, multifunctional flour mixing, and lipid extraction. An IPSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Grant
    Filed: August 21, 2016
    Date of Patent: August 28, 2018
    Inventor: Daniel Michael Leo
  • Patent number: 10011483
    Abstract: A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: July 3, 2018
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Hamilton Sean Michael Whitney, Daniel A. Burciaga
  • Patent number: 10011482
    Abstract: A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: July 3, 2018
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Hamilton Sean Michael Whitney, Daniel A. Burciaga
  • Publication number: 20180177168
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated Insect Production Superstructure Systems (IPSS) may be used to produce insects for human and animal consumption, and for the extraction and use of lipids for applications involving medicine, nanotechnology, consumer products, and chemical production with minimal water, feedstock, and environmental impact. An IPSS may comprise modules including feedstock mixing, enhanced feedstock splitting, insect feeding, insect breeding, insect collection, insect grinding, pathogen removal, multifunctional flour mixing, and lipid extraction. An IPSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Applicant: INSECTERGY, LLC
    Inventor: Daniel Michael Leo
  • Publication number: 20180116131
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer-operated farming superstructure systems (FSS) may be used to produce cannabis for human consumption with minimal water and environmental impact. A system for producing electricity, heat, and cannabis includes a power production system (PPS), a farming superstructure system (FSS), and a temperature control unit (TCU). Methods to method to separate volatiles from cannabis are described. Methods to asexually clone a plurality of cannabis plants are also provided.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: INSECTERGY, LLC
    Inventor: Daniel Michael Leo
  • Publication number: 20180103679
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated Insect Production Superstructure Systems (IPSS) may be used to produce insects for human and animal consumption, and for the extraction and use of lipids for applications involving medicine, nanotechnology, consumer products, and chemical production with minimal water, feedstock, and environmental impact. An IPSS may comprise modules including feedstock mixing, enhanced feedstock splitting, insect feeding, insect breeding, insect collection, insect grinding, pathogen removal, multifunctional flour mixing, liquid mixing, shaping, cooking, flavoring, biocatalyst mixing, exoskeleton separation, liquid separation, and lipid extraction. An IPSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: INSECTERGY, LLC
    Inventor: Daniel Michael Leo
  • Patent number: 9920926
    Abstract: A pulse combustion heat exchanger having a longitudinal axis is configured to accept oxidant and fuel and output a cooled combustion stream. The pulse combustion heat exchanger includes an oxidant inlet section that accepts oxidant, a fuel inlet section that accepts fuel, a mixing section that mixes oxidant with fuel, a combustion section that receives the oxidant and fuel and produces a pulsating combustion stream, and a heat transfer section configured to receive the pulsating combustion stream, the heat transfer section includes one or more resonance conduits. Coolant is employed at a plurality of longitudinally spaced-apart transition sections to remove heat.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: March 20, 2018
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Dave G. Newport, Daniel A. Burciaga, Daniel Michael Leo, Justin Kevin Miller, Kaitlin Emily Harrington, Brian Christopher Attwood, Hamilton Sean Michael Whitney
  • Patent number: 9920712
    Abstract: A feedstock delivery system transfers a carbonaceous material, such as municipal solid waste, into a product gas generation system. The feedstock delivery system includes a splitter for splitting bulk carbonaceous material into a plurality of carbonaceous material streams. Each stream is processed using a weighing system for gauging the quantity of carbonaceous material, a densification system for forming plugs of carbonaceous material, a de-densification system for breaking up the plugs of carbonaceous material, and a gas and carbonaceous material mixing system for forming a carbonaceous material and gas mixture. A pressure of the mixing gas is reduced prior to mixing with the carbonaceous material, and the carbonaceous material to gas weight ratio is monitored. A transport assembly conveys the carbonaceous material and gas mixture to a first reactor where at least the carbonaceous material within the mixture is subject to thermochemical reactions to form the product gas.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: March 20, 2018
    Assignee: ThermoChem Recovery International, Inc.
    Inventors: Ravi Chandran, Daniel A. Burciaga, Daniel Michael Leo, Shawn Robert Freitas, Dave G. Newport, Justin Kevin Miller, Kaitlin Emily Harrington, Brian Christopher Attwood, Emily Jane Schultheis, Kelly Ann Kishton
  • Publication number: 20180070567
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated Insect Production Superstructure Systems (IPSS) may be used to produce insects for human and animal consumption, and for the extraction and use of lipids for applications involving medicine, nanotechnology, consumer products, and chemical production with minimal water, feedstock, and environmental impact. An IPSS may comprise modules including feedstock mixing, feedstock splitting, insect feeding, insect breeding, insect collection, insect grinding, pathogen removal, multifunctional flour mixing, and lipid extraction. An IPSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Applicant: INSECTERGY, LLC
    Inventor: Daniel Michael Leo
  • Publication number: 20180058380
    Abstract: A feedstock delivery system transfers a carbonaceous material, such as municipal solid waste, into a product gas generation system. The feedstock delivery system includes a splitter for splitting bulk carbonaceous material into a plurality of carbonaceous material streams. Each stream is processed using a weighing system for gauging the quantity of carbonaceous material, a densification system for forming plugs of carbonaceous material, a de-densification system for breaking up the plugs of carbonaceous material, and a gas and carbonaceous material mixing system for forming a carbonaceous material and gas mixture. A pressure of the mixing gas is reduced prior to mixing with the carbonaceous material, and the carbonaceous material to gas weight ratio is monitored. A transport assembly conveys the carbonaceous material and gas mixture to a first reactor where at least the carbonaceous material within the mixture is subject to thermochemical reactions to form the product gas.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Ravi CHANDRAN, Daniel A. BURCIAGA, Daniel Michael LEO, Shawn Robert FREITAS, Dave G. NEWPORT, Justin Kevin MILLER, Kaitlin Emily HARRINGTON, Brian Christopher ATTWOOD, Emily Jane SCHULTHEIS, Kelly Ann KISHTON
  • Publication number: 20180058382
    Abstract: A feedstock delivery system transfers a carbonaceous material, such as municipal solid waste, into a product gas generation system. The feedstock delivery system includes a splitter for splitting bulk carbonaceous material into a plurality of carbonaceous material streams. Each stream is processed using a weighing system for gauging the quantity of carbonaceous material, a densification system for forming plugs of carbonaceous material, a de-densification system for breaking up the plugs of carbonaceous material, and a gas and carbonaceous material mixing system for forming a carbonaceous material and gas mixture. A pressure of the mixing gas is reduced prior to mixing with the carbonaceous material, and the carbonaceous material to gas weight ratio is monitored. A transport assembly conveys the carbonaceous material and gas mixture to a first reactor where at least the carbonaceous material within the mixture is subject to thermochemical reactions to form the product gas.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: RAVI CHANDRAN, Daniel A. BURCIAGA, Daniel Michael LEO, Shawn Robert FREITAS, Dave G. NEWPORT, Justin Kevin MILLER, Kaitlin Emily HARRINGTON, Brian Christopher ATTWOOD, Emily Jane SCHULTHEIS, Kelly Ann KISHTON
  • Publication number: 20180057760
    Abstract: A feedstock delivery system transfers a carbonaceous material, such as municipal solid waste, into a product gas generation system. The feedstock delivery system includes a splitter for splitting bulk carbonaceous material into a plurality of carbonaceous material streams. Each stream is processed using a weighing system for gauging the quantity of carbonaceous material, a densification system for forming plugs of carbonaceous material, a de-densification system for breaking up the plugs of carbonaceous material, and a gas and carbonaceous material mixing system for forming a carbonaceous material and gas mixture. A pressure of the mixing gas is reduced prior to mixing with the carbonaceous material, and the carbonaceous material to gas weight ratio is monitored. A transport assembly conveys the carbonaceous material and gas mixture to a first reactor where at least the carbonaceous material within the mixture is subject to thermochemical reactions to form the product gas.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Applicant: ThermoChem Recovery International, Inc.
    Inventors: Ravi CHANDRAN, Daniel A. BURCIAGA, Daniel Michael LEO, Shawn Robert FREITAS, Dave G. NEWPORT, Justin Kevin MILLER, Kaitlin Emily HARRINGTON, Brian Christopher ATTWOOD, Emily Jane SCHULTHEIS, Kelly Ann KISHTON
  • Publication number: 20180058381
    Abstract: A feedstock delivery system transfers a carbonaceous material, such as municipal solid waste, into a product gas generation system. The feedstock delivery system includes a splitter for splitting bulk carbonaceous material into a plurality of carbonaceous material streams. Each stream is processed using a weighing system for gauging the quantity of carbonaceous material, a densification system for forming plugs of carbonaceous material, a de-densification system for breaking up the plugs of carbonaceous material, and a gas and carbonaceous material mixing system for forming a carbonaceous material and gas mixture. A pressure of the mixing gas is reduced prior to mixing with the carbonaceous material, and the carbonaceous material to gas weight ratio is monitored. A transport assembly conveys the carbonaceous material and gas mixture to a first reactor where at least the carbonaceous material within the mixture is subject to thermochemical reactions to form the product gas.
    Type: Application
    Filed: October 18, 2017
    Publication date: March 1, 2018
    Inventors: RAVI CHANDRAN, Daniel A. BURCIAGA, Daniel Michael LEO, Shawn Robert FREITAS, Dave G. NEWPORT, Justin Kevin MILLER, Kaitlin Emily HARRINGTON, Brian Christopher ATTWOOD, Emily Jane SCHULTHEIS, Kelly Ann KISHTON
  • Publication number: 20180049414
    Abstract: Variable-scale, modular, easily manufacturable, energy efficient, reliable, and computer operated Insect Production Superstructure Systems (IPSS) may be used to produce insects for human and animal consumption, and for the extraction and use of lipids for applications involving medicine, nanotechnology, consumer products, and chemical production with minimal water, feedstock, and environmental impact. An IPSS may comprise modules including feedstock mixing, feedstock splitting, insect feeding, insect breeding, insect collection, insect grinding, pathogen removal, multifunctional flour mixing, and lipid extraction. An IPSS may be configured to be constructed out of a plurality of containerized modules.
    Type: Application
    Filed: August 21, 2016
    Publication date: February 22, 2018
    Inventor: Daniel Michael Leo