Patents by Inventor Daniel Miklos

Daniel Miklos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108274
    Abstract: Embodiments are directed to a human-machine interface including one or more sensors configured to detect myoelectrical signals of a user and an electronic device configured to provide a set of training data based on the myoelectric signals as input to a classifier. The electronic device can receive one or more sets of feature data each associated with movement classification from the classification model and display a user interface including a multi-dimensional plot comprising at least two dimensions that are each based on a component dimension determined by the classifier and used to determine the first and second sets of the feature data. The plot can include visual elements corresponding to the sets of feature data. The user device can receive a second set of detected myoelectric signals and display a graphical icon on the multi-dimensional plot indicating a current feature based on the second set of myoelectric signals.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 4, 2024
    Inventors: György Miklós Lévay, Dániel Czeiner, Rahul Reddy Kaliki
  • Publication number: 20060000769
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: August 26, 2005
    Publication date: January 5, 2006
    Inventor: Daniel Miklos
  • Publication number: 20060000768
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: August 29, 2005
    Publication date: January 5, 2006
    Inventor: Daniel Miklos
  • Publication number: 20050279705
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population with low yield organisms, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: August 26, 2005
    Publication date: December 22, 2005
    Inventor: Daniel Miklos
  • Publication number: 20050279704
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: August 26, 2005
    Publication date: December 22, 2005
    Inventor: Daniel Miklos
  • Publication number: 20050082223
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, or for solids minimization purposes in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be added back to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population with low yield organisms, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: November 10, 2004
    Publication date: April 21, 2005
    Inventor: Daniel Miklos
  • Publication number: 20040045898
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific, tasks either during the main process, or for solids minimization purposes in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be added back to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population with low yield organisms, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 11, 2004
    Inventor: Daniel Miklos