Patents by Inventor Daniel Nicolas Splitthoff

Daniel Nicolas Splitthoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122495
    Abstract: Techniques are described for detecting a specified substance in an examination object by way of a magnetic resonance apparatus. A controller ascertains a magnetic resonance sequence comprising at least one sub-sequence for detecting at least one substance to be detected in the examination object as a function of the at least one substance to be detected, and ascertains at least one measuring instant for capturing a respective MRT signal to detect the at least one substance to be detected in the examination object as a function of the at least one substance to be detected. The at least one MRT signal is evaluated for fulfillment of a predetermined detection condition, and a presence of the at least one substance to be detected is established when the at least one MRT signal fulfils the predetermined detection condition.
    Type: Application
    Filed: October 12, 2023
    Publication date: April 18, 2024
    Applicant: Siemens Healthcare GmbH
    Inventors: Daniel Nicolas Splitthoff, Heiko Meyer, Thomas Vahle, Florian Maier, Wei Liu, Christianne Leidecker, Gregor Michael Körzdörfer, Peter Gall, Daniel Polak
  • Publication number: 20230293039
    Abstract: A method for acquiring a magnetic resonance image dataset of an object includes using an imaging protocol in which a number of k-space lines are acquired in one shot. The imaging protocol includes a plurality of shots. A plurality of additional k-space lines are acquired in at least a subset of the shots, such that movement of the object is detected throughout the imaging protocol. A method for generating a motion-corrected magnetic resonance image dataset from the dataset thus acquired, a magnetic resonance imaging apparatus, and a computer program are also provided.
    Type: Application
    Filed: March 17, 2023
    Publication date: September 21, 2023
    Inventors: Daniel Polak, Daniel Nicolas Splitthoff, Stephen Farman Cauley
  • Publication number: 20230160989
    Abstract: A method for reconstructing a motion-corrected magnetic resonance image of a subject includes providing k-space magnetic resonance data including a plurality of shots, wherein each shot corresponds to an individual motion state of the subject. The method further includes providing motion parameters related to each motion state, determining redundancies across the motion states of the plurality of shots based on the motion parameters, compressing the plurality of motion states based on the determined redundancies across the motion states, and reconstructing the magnetic resonance image from the k-space magnetic resonance data based on the compressed plurality of motion states.
    Type: Application
    Filed: November 21, 2022
    Publication date: May 25, 2023
    Inventors: Daniel Polak, Stephen Farman Cauley, Daniel Nicolas Splitthoff
  • Patent number: 11630177
    Abstract: Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the most corrupted echo trains for removal or triggering a replacement by reacquisition.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: April 18, 2023
    Assignees: Siemens Healthcare GmbH, The General Hospital Corporation
    Inventors: Daniel Nicolas Splitthoff, Julian Hossbach, Daniel Polak, Stephen Farman Cauley, Bryan Clifford, Wei-Ching Lo
  • Patent number: 11523747
    Abstract: A method for operating a medical diagnostic system that is configured to use a system component of the diagnostic system to generate examination data of a person under examination during an examination procedure is provided. The examination procedure with control of the system component is controlled by a piece of control software, and a component driver exchanges control commands of the control software with the system component in order to control the system component. The method includes providing an event driver that communicates with the control software via an interface of the control software. Via the event driver, a first event is detected in the examination procedure and reported to the event driver. When the first event is detected in the examination procedure, the use of the system component in the examination procedure is modified to a first type defined by the event driver.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: December 13, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Simon Bauer, Thorsten Feiweier, Christian Köglmeier, Carsten Prinz, Daniel Nicolas Splitthoff, Michael Zenge, Michael Schneider
  • Publication number: 20220342018
    Abstract: Systems and Methods that identify the effect of motion during a medical imaging procedure. A neural network is trained to translate motion induced deviations of a coil-mixing matrix relative to a reference acquisition into a motion score. This score can be used for the prospective detection of the most corrupted echo trains for removal or triggering a replacement by reacquisition.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 27, 2022
    Inventors: Daniel Nicolas Splitthoff, Julian Hossbach, Daniel Polak, Stephen Farman Cauley, Bryan Clifford, Wei-Ching Lo
  • Patent number: 11353534
    Abstract: A method for acquiring a magnetic resonance data set of an object under examination by a magnetic resonance system using a scan sequence is provided. The scan sequence includes a succession of sequence blocks, and in each sequence block, there is at least one sub-block including an excitation section and/or a detection section. An excitation section includes at least one excitation pulse, and in a detection section, an echo signal or an echo train is acquired as a scan signal. At least one item of motion information is provided for each sub-block. The motion information contains information about a movement of the object under examination within a duration of the sub-block. Some of the sub-blocks are automatically repeated. At least the sub-blocks having motion information that exceeds a threshold value are repeated. The threshold value defines a motion amplitude.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: June 7, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Daniel Nicolas Splitthoff, Tobias Kober, Randall Kroeker, Daniel Przioda, Dominik Paul
  • Patent number: 11280869
    Abstract: A method is used to carry out a magnetic resonance measurement with at least one echo train with n spin echoes and prospective movement correction. Movement correction data for each echo train is updated at the start of the echo train and is then updated again at most partially for the spin echoes.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 22, 2022
    Assignees: Siemens Healthcare GmbH, Albert-Ludwigs-Universität Freiburg
    Inventors: Xiang Gao, Tobias Kober, Daniel Nicolas Splitthoff, Maxim Zaitsev
  • Patent number: 11249162
    Abstract: Techniques are disclosed related to the compensation of phase offsets introduced into k-space lines as a result of encoding of blip gradients due when motion is present, which may be used for parallel magnetic resonance imaging (MRI) techniques such as blipped SMS or blipped CAIPIRINHA. The compensation of these additional phase offsets may prevent artifacts that would otherwise be present in the reconstructed images as a result of motion during the MRI scanning procedure. The additional phase offsets may be accounted for during the image acquisition phase of the MRI scan or, alternatively, during the image reconstruction phase.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: February 15, 2022
    Assignees: Siemens Healthcare GmbH, The General Hospital Corporation
    Inventors: Daniel Nicolas Splitthoff, Daniel Polak, Kawin Setsompop, Borjan Gagoski
  • Publication number: 20220043089
    Abstract: Techniques are disclosed related to the compensation of phase offsets introduced into k-space lines as a result of encoding of blip gradients due when motion is present, which may be used for parallel magnetic resonance imaging (MRI) techniques such as blipped SMS or blipped CAIPIRINHA. The compensation of these additional phase offsets may prevent artifacts that would otherwise be present in the reconstructed images as a result of motion during the MRI scanning procedure. The additional phase offsets may be accounted for during the image acquisition phase of the MRI scan or, alternatively, during the image reconstruction phase.
    Type: Application
    Filed: August 4, 2020
    Publication date: February 10, 2022
    Applicants: Siemens Healthcare GmbH, The General Hospital Corporation
    Inventors: Daniel Nicolas Splitthoff, Daniel Polak, Kawin Setsompop, Borjan Gagoski
  • Patent number: 11187769
    Abstract: The disclosure relates to a computer implemented method for magnetic resonance imaging. The method includes: receiving at least a first and a second subset of k-space data as radio frequency signals emitted from excited hydrogen atoms of a subject; sampling the first and second subset of k-space data; choosing the first subset of k-space data as a base subset of k-space data; estimating motion parameters of the second subset of k-space data against the base subset of k-space data; and correcting the second subset of k-space data based on the estimated motion parameters of the second subset of k-space data. The motion parameters of the second subset of k-space data are parameters of a non-linear motion estimating function representing a motion of the subject between receiving the first subset of k-space data and receiving the second subset of k-space data.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: November 30, 2021
    Assignees: THE GENERAL HOSPITAL CORPORATION, SIEMENS HEALTHCARE GMBH
    Inventors: Daniel Nicolas Splitthoff, Julian Hossbach, Josef Pfeuffer, Stephen Farman Cauley, Melissa Haskell
  • Publication number: 20210325501
    Abstract: The disclosure relates to a method for correcting a movement of an object occurring during an MR image acquisition. The method includes: determining a motion model describing possible movements of the object based on a defined number of degrees of freedom; detecting a motion of a marker provided on the object with a motion sensor; determining a description of the motion model in a common coordinate system; determining the motion of the marker in the common coordinate system; determining a first motion of the object in the common coordinate system using the description of the motion model, the first motion being the motion that best matches the determined motion of the marker in the common coordinate system using the defined number of degrees of freedom; and correcting the movement of the object based on the determined first motion in order to determine at least one motion corrected MR image.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 21, 2021
    Inventors: Randall Kroeker, Daniel Przioda, Michael Roas-Löffler, Wilfried Schnell, Daniel Nicolas Splitthoff
  • Publication number: 20210149006
    Abstract: A method for acquiring a magnetic resonance data set of an object under examination by a magnetic resonance system using a scan sequence is provided. The scan sequence includes a succession of sequence blocks, and in each sequence block, there is at least one sub-block including an excitation section and/or a detection section. An excitation section includes at least one excitation pulse, and in a detection section, an echo signal or an echo train is acquired as a scan signal. At least one item of motion information is provided for each sub-block. The motion information contains information about a movement of the object under examination within a duration of the sub-block. Some of the sub-blocks are automatically repeated. At least the sub-blocks having motion information that exceeds a threshold value are repeated. The threshold value defines a motion amplitude.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 20, 2021
    Inventors: Daniel Nicolas Splitthoff, Tobias Kober, Randall Kroeker, Daniel Przioda, Dominik Paul
  • Publication number: 20200341097
    Abstract: A method is used to carry out a magnetic resonance measurement with at least one echo train with n spin echoes and prospective movement correction. Movement correction data for each echo train is updated at the start of the echo train and is then updated again at most partially for the spin echoes.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 29, 2020
    Inventors: Xiang Gao, Tobias Kober, Daniel Nicolas Splitthoff, Maxim Zaitsev
  • Publication number: 20200341101
    Abstract: The disclosure relates to a computer implemented method for magnetic resonance imaging. The method includes: receiving at least a first and a second subset of k-space data as radio frequency signals emitted from excited hydrogen atoms of a subject; sampling the first and second subset of k-space data; choosing the first subset of k-space data as a base subset of k-space data; estimating motion parameters of the second subset of k-space data against the base subset of k-space data; and correcting the second subset of k-space data based on the estimated motion parameters of the second subset of k-space data. The motion parameters of the second subset of k-space data are parameters of a non-linear motion estimating function representing a motion of the subject between receiving the first subset of k-space data and receiving the second subset of k-space data.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 29, 2020
    Inventors: Daniel Nicolas Splitthoff, Julian Hossbach, Josef Pfeuffer, Stephen Farman Cauley, Melissa Haskell
  • Publication number: 20200214590
    Abstract: A method for operating a medical diagnostic system that is configured to use a system component of the diagnostic system to generate examination data of a person under examination during an examination procedure is provided. The examination procedure with control of the system component is controlled by a piece of control software, and a component driver exchanges control commands of the control software with the system component in order to control the system component. The method includes providing an event driver that communicates with the control software via an interface of the control software. Via the event driver, a first event is detected in the examination procedure and reported to the event driver. When the first event is detected in the examination procedure, the use of the system component in the examination procedure is modified to a first type defined by the event driver.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Inventors: Simon Bauer, Thorsten Feiweier, Christian Köglmeier, Carsten Prinz, Daniel Nicolas Splitthoff, Michael Zenge, Michael Schneider