Patents by Inventor Daniel Niederlöhner

Daniel Niederlöhner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11035921
    Abstract: In a method for operating a magnetic resonance (MR) facility during recording of MR data by using a MR sequence including a saturation module for a spin type to be saturated, in which a high-frequency saturation pulse is emitted between first and second spoiler gradient pulses, and multiple further gradient pulses apart from the spoiler gradient pulses, eddy current data is determined. The eddy current data describes eddy currents existing during emission of the saturation pulse and resulting from the further gradient pulses. Further, a pulse parameter of the first spoiler gradient pulse is selected based on the eddy current data such that the eddy currents generated by the first spoiler gradient pulse compensate for at least part of the eddy currents described by the eddy current data during emission of the saturation pulse. The facility is controlled to emit the first spoiler gradient pulse with the selected pulse parameter.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 15, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Uvo Hoelscher, Michael Koehler, Daniel Niederloehner, Alto Stemmer
  • Patent number: 10989781
    Abstract: A method and system for determining a magnetic field map in a MR system based on position of a movable patient support of the MR system are provided, wherein a first resulting field map including position dependent information about a magnetic field distribution in a homogeneity volume including an examination volume of the MR system is provided when the movable patient support is located at a first position, wherein a stationary field map including information about a magnetic field distribution in the homogeneity volume is provided, which is independent of the position of the movable patient support, wherein a position dependent field map including information about a magnetic field distribution in the homogeneity volume mainly influenced by a position of the movable patient support is determined using the stationary field map and the first resulting field map, and wherein a second resulting field map in the homogeneity volume is determined when the movable patient support is located at a second position di
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 27, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Daniel Niederlöhner
  • Patent number: 10983183
    Abstract: In a method and apparatus for determination of phase distributions in MR imaging, a measured phase distribution of the region of interest is combined with at least one second phase value to form a combination-phase distribution, wherein the phase values of the combination-phase distribution are restricted to a defined presentation interval. A correction-phase distribution is generated, based on a known magnetic field distribution in the region of interest. The phase values thereof are not restricted to the defined presentation interval. A corrected combination-phase distribution is generated using the correction-phase distribution and the combination-phase distribution, in which the phase values are restricted to the defined presentation interval. An absolute combination-phase distribution is generated from the corrected combination-phase distribution, in which the phase values are not restricted to the defined presentation interval.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: April 20, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Daniel Niederloehner
  • Publication number: 20210025956
    Abstract: Methods and systems for controlling patient stimulating effects in MR imaging. The methods and systems include calculating a first effective stimulus duration independently for each pulse flank of an MRI sequence individually and calculating a second effective stimulus duration for which a respective history of a changing gradient field during the sequence is taken into account. Dependent on an evaluation of both the first and second effective stimulus durations a threshold value for an allowable rate of change in the magnetic gradient field is then calculated. The respective MRI sequence is then evaluated against the calculated threshold value to determine whether or not the respective MRI sequence is safe to apply.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 28, 2021
    Inventors: Daniel Niederlöhner, Gudrun Ruyters, Axel vom Endt
  • Patent number: 10761174
    Abstract: A method for recording a B0 map of a main magnetic field of a magnetic resonance device in an imaging volume of which an object to be recorded is arranged includes scanning a recording region to be covered by the B0 map by the magnetic resonance device. The recording region is scanned by a map recording sequence slice-by-slice in successive slices in a slice selection direction extending in a phase encoding direction and a readout direction, or three-dimensionally using two phase encoding directions and one readout direction in order to ascertain the B0 map. In a preliminary scan, the magnetic resonance device ascertains extension information describing the extension of the object using a scout sequence, which is used to define the recording region in sequence parameters of the map recording sequence and/or to adjust at least one sequence parameter of the map recording sequence.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: September 1, 2020
    Assignee: Siemens Healthcare GmbH
    Inventor: Daniel Niederlöhner
  • Publication number: 20200116807
    Abstract: Eddy current induced magnetic fields (MF) are compensated in a magnetic resonance imaging system. An MR-sequence (M) includes a number of gradients. A dataset includes values of an amplitude and a time constant of eddy current fields of a number of gradients on at least one gradient axis. A number of points in time within the time period of the MR-sequence are defined. A number of constant currents are calculated for a number of coils of the magnetic resonance imaging system based on the dataset. The number of constant currents is designed to compensate at least at the one defined point in time (PT1, PT2). The calculated number of constant currents are applied on the related coils prior or during the application of the MR-sequence or a section of the MR-sequence.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 16, 2020
    Inventors: Uvo Hölscher, Michael Köhler, Daniel Niederlöhner, Alto Stemmer
  • Publication number: 20200072934
    Abstract: In a method for operating a magnetic resonance (MR) facility during recording of MR data by using a MR sequence including a saturation module for a spin type to be saturated, in which a high-frequency saturation pulse is emitted between first and second spoiler gradient pulses, and multiple further gradient pulses apart from the spoiler gradient pulses, eddy current data is determined. The eddy current data describes eddy currents existing during emission of the saturation pulse and resulting from the further gradient pulses. Further, a pulse parameter of the first spoiler gradient pulse is selected based on the eddy current data such that the eddy currents generated by the first spoiler gradient pulse compensate for at least part of the eddy currents described by the eddy current data during emission of the saturation pulse. The facility is controlled to emit the first spoiler gradient pulse with the selected pulse parameter.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 5, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Uvo Hoelscher, Michael Koehler, Daniel Niederloehner, Alto Stemmer
  • Patent number: 10517560
    Abstract: In a method and apparatus for determining at least one patient-specific safety parameter for a medical imaging examination conducted on the patient by a medical imaging device, position data of the patient are acquired by a position data detector while the patient is on a patient-positioning device of the medical imaging apparatus. The acquired position data are evaluated in a processor in order to determine position information of the patient. The patient-specific safety parameter is determined using the position information of the patient.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 31, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Gerhard Brinker, Anja Jaeger, Daniel Niederloehner, Stephan Nufer, Jens Thoene
  • Patent number: 10429464
    Abstract: In a magnetic resonance apparatus having a scanner that generates a basic magnetic field in an imaging volume, and an operating method to acquire data from an entirety of a recording volume, wherein the scanner has a global shim coil acting on the entire imaging volume, and a local shim coil acting, with the global shim coil, on a sub-volume containing a region of interest, a first adjustment volume is established that contains the recording volume. A smaller, second adjustment volume is established containing the region of interest, and at most, the sub-volume. Using a field map of the basic magnetic field that covers the first adjustment volume, shim currents are respectively identified for the global shim unit, for homogenizing the first adjustment volume, and for the local shim unit, for homogenizing the second adjustment volume, accounting for the effect of the first shim currents on the second adjustment volume.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 1, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Daniel Niederloehner, Dominik Paul
  • Patent number: 10429465
    Abstract: In a method and magnetic resonance apparatus for determining a shim setting in order to increase a homogeneity of the basic magnetic field of the scanner of the apparatus by operating a shim element, information is obtained concerning the dependence of an induced field of the shim element on a set shim setting. A first field map is recorded and a first shim setting for the shim element is determined based on the first field map. A second field map is recorded while the shim element is driven with the first shim setting. A field induced by the shim element by the first shim setting is determined based on the first field map and the second field map. A second shim setting for the shim element is determined based on the determined induced field and the acquired information.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 1, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Ralf Ladebeck, Daniel Niederloehner, Johann Sukkau
  • Patent number: 10386434
    Abstract: A method is for carrying out an automatic adjustment of an MR system, including a number of receive coils. In such cases, a number of partial spectra in a number of receive coils are measured for an excitation volume of an examination object. The number of partial spectra are evaluated via an algorithm, at least one characteristic value being determined for each partial spectrum and a decision being further made with the aid of the number of characteristic values to determine whether the partial spectra fulfill a quality criterion. Finally, adjustment parameters of the MR system are optimized on the basis of the number of partial spectra.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 20, 2019
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Johann Sukkau, Michael Wullenweber, Daniel Niederloehner
  • Patent number: 10288709
    Abstract: In a method for operating a medical imaging apparatus having multiple sub-systems controlled by a controller in a coordinated manner in order to perform a measurement sequence, a number of first setting parameters are chosen to be constant for a complete measurement sequence, and after a static adjustment, a dynamic adjustment of second setting parameters, which are defined by control signals for the measurement sequence and that can vary while a measurement sequence is being performed, takes place. Base data defining underlying conditions specific to the patient to be imaged are measured for the total imaging volume in a measurement sequence. Reference values for the setting parameters that affect the underlying conditions are saved in association with the base data during the measurement sequence.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: May 14, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Michael Koehler, Daniel Niederloehner, Michael Wullenweber
  • Publication number: 20190064302
    Abstract: A method and system for determining a magnetic field map in a MR system based on position of a movable patient support of the MR system are provided, wherein a first resulting field map including position dependent information about a magnetic field distribution in a homogeneity volume including an examination volume of the MR system is provided when the movable patient support is located at a first position, wherein a stationary field map including information about a magnetic field distribution in the homogeneity volume is provided, which is independent of the position of the movable patient support, wherein a position dependent field map including information about a magnetic field distribution in the homogeneity volume mainly influenced by a position of the movable patient support is determined using the stationary field map and the first resulting field map, and wherein a second resulting field map in the homogeneity volume is determined when the movable patient support is located at a second position di
    Type: Application
    Filed: August 21, 2018
    Publication date: February 28, 2019
    Inventors: Thorsten Feiweier, Daniel Niederlöhner
  • Publication number: 20190064303
    Abstract: A method for recording a B0 map of a main magnetic field of a magnetic resonance device in an imaging volume of which an object to be recorded is arranged includes scanning a recording region to be covered by the B0 map by the magnetic resonance device. The recording region is scanned by a map recording sequence slice-by-slice in successive slices in a slice selection direction extending in a phase encoding direction and a readout direction, or three-dimensionally using two phase encoding directions and one readout direction in order to ascertain the B0 map. In a preliminary scan, the magnetic resonance device ascertains extension information describing the extension of the object using a scout sequence, which is used to define the recording region in sequence parameters of the map recording sequence and/or to adjust at least one sequence parameter of the map recording sequence.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 28, 2019
    Inventor: Daniel Niederlöhner
  • Publication number: 20190025386
    Abstract: In a method and apparatus for determination of phase distributions in MR imaging, a measured phase distribution of the region of interest is combined with at least one second phase value to form a combination-phase distribution, wherein the phase values of the combination-phase distribution are restricted to a defined presentation interval. A correction-phase distribution is generated, based on a known magnetic field distribution in the region of interest. The phase values thereof are not restricted to the defined presentation interval. A corrected combination-phase distribution is generated using the correction-phase distribution and the combination-phase distribution, in which the phase values are restricted to the defined presentation interval. An absolute combination-phase distribution is generated from the corrected combination-phase distribution, in which the phase values are not restricted to the defined presentation interval.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 24, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Daniel Niederloehner
  • Patent number: 10175323
    Abstract: A method for adapting activation parameters used to generate a pulse sequence when activating a magnetic resonance system is provided. The method includes determining stimulation values for the pulse sequence based on predefined activation parameters. The stimulation values represent a stimulation exposure of a patient. Test regions that exhibit stimulation maxima are identified in the pulse sequence, and the identified test regions are tested with respect to compliance with a predefined stimulation limit value.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 8, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Daniel Niederlöhner, Dominik Paul, Jörg Roland
  • Patent number: 10175324
    Abstract: In a magnetic resonance (MR) imaging apparatus and control method therefor, multiple frequency spectra of a material of the examination object are detected using at least one radio-frequency coil of and MR scanner, the coil having a number of coil elements and at least two of the frequency spectra are detected individually detected by respective, different coil elements. A number of resonant frequencies of at least one molecule in the material are established in the number of frequency spectra. Control information is formulated based on the number of resonant frequencies. The magnetic resonance scanner is controlled using the control information.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: January 8, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Simon Bauer, Swen Campagna, Uvo Hoelscher, Daniel Niederloehner, Dominik Paul
  • Patent number: 10094861
    Abstract: In a method, device and magnetic resonance (MR) system for determining a system frequency in MR imaging, a frequency spectrum of a region under examination is acquired. A cost function (FOM) is determined that encompasses the difference between a parameterized model function having assigned parameters that is to be optimized, and the acquired frequency spectrum. The cost function is subsequently minimized. Furthermore, the parameters of the optimized parameterized model function assigned to the determined minimum are determined and the system frequency is calculated on the basis of the determined parameters.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: October 9, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Daniel Niederloehner
  • Publication number: 20180252786
    Abstract: A method is for carrying out an automatic adjustment of an MR system, including a number of receive coils. In such cases, a number of partial spectra in a number of receive coils are measured for an excitation volume of an examination object. The number of partial spectra are evaluated via an algorithm, at least one characteristic value being determined for each partial spectrum and a decision being further made with the aid of the number of characteristic values to determine whether the partial spectra fulfill a quality criterion. Finally, adjustment parameters of the MR system are optimized on the basis of the number of partial spectra.
    Type: Application
    Filed: February 28, 2018
    Publication date: September 6, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Johann SUKKAU, Michael WULLENWEBER, Daniel NIEDERLOEHNER
  • Publication number: 20180238979
    Abstract: In a magnetic resonance apparatus having a scanner that generates a basic magnetic field in an imaging volume, and an operating method to acquire data from an entirety of a recording volume, wherein the scanner has a global shim coil acting on the entire imaging volume, and a local shim coil acting, with the global shim coil, on a sub-volume containing a region of interest, a first adjustment volume is established that contains the recording volume. A smaller, second adjustment volume is established containing the region of interest, and at most, the sub-volume. Using a field map of the basic magnetic field that covers the first adjustment volume, shim currents are respectively identified for the global shim unit, for homogenizing the first adjustment volume, and for the local shim unit, for homogenizing the second adjustment volume, accounting for the effect of the first shim currents on the second adjustment volume.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 23, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Daniel Niederloehner, Dominik Paul