Patents by Inventor Daniel Ohen Ricketts

Daniel Ohen Ricketts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9442005
    Abstract: A non-contact method of measuring an insertion loss of a DUT connector is disclosed. The DUT connector has a first ferrule with a first optical fiber and a first end face. The method utilizes a reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules so that the first and second end faces are confronting and spaced apart to define a gap with an axial gap distance d; measuring values of the insertion loss between the first and second optical fibers for different gap distances d>0; and estimating a value for the insertion loss for a gap distance of d=0 based on the measured values of the insertion loss when d>0.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: September 13, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Adam Joseph Fusco, Daniel Ohen Ricketts, James Scott Sutherland, Neil David Vance, Elvis Alberto Zambrano
  • Publication number: 20160091392
    Abstract: A controlled-contact method of measuring an insertion loss of a compressible DUT having a first ferrule with a first optical fiber and a first end face is disclosed. The method utilizes a compressible reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules to define a gap with an axial gap distance of greater than 150 ?m; moving the reference connector at a connector velocity in the range from 1 mm/s to 5 mm/s; when the gap distance is less than 150 ?m, reducing the connector velocity to between 10 ?m/s and 500 ?m/s until contact while continuing to measure the coupled optical power; after contact, increasing the connector velocity as the reference and DUT connector axially compress. The insertion loss is determined from ongoing measurements of the coupled optical power.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: Adam Joseph Fusco, Daniel Ohen Ricketts, James Scott Sutherland, Neil David Vance, Elvis Alberto Zambrano
  • Publication number: 20160033325
    Abstract: A non-contact method of measuring an insertion loss of a DUT connector is disclosed. The DUT connector has a first ferrule with a first optical fiber and a first end face. The method utilizes a reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules so that the first and second end faces are confronting and spaced apart to define a gap with an axial gap distance d; measuring values of the insertion loss between the first and second optical fibers for different gap distances d>0; and estimating a value for the insertion loss for a gap distance of d=0 based on the measured values of the insertion loss when d>0.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 4, 2016
    Inventors: Adam Joseph Fusco, Daniel Ohen Ricketts, James Scott Sutherland, Neil David Vance, Elvis Alberto Zambrano
  • Patent number: 8325332
    Abstract: Start-up methods for frequency converted light sources and projector systems comprising frequency converted light sources are described herein. The start-up methods generally comprise modulating the frequency converted light source over three degrees of freedom (two spatial dimensions and one wavelength dimension). Specifically, fast oscillation of an axis of an adjustable optical component is performed simultaneously with fast oscillation of a wavelength of the semiconductor laser while a second axis of the adjustable optical component is incrementally stepped and the output intensity of the frequency converted light source is monitored for each step. This start-up method allows for three linear searches to be used to rapidly locate the appropriate control settings for the frequency converted light source.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: December 4, 2012
    Assignee: Corning Incorporated
    Inventors: Garrett Andrew Piech, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 8294130
    Abstract: A method for optimizing the alignment of an optical package includes directing a beam spot of a laser along a folded optical path and onto a waveguide portion of a wavelength conversion. The output intensity of the wavelength conversion device is measured as a position of an adjustable optical component is adjusted about a first scanning axis and a second scanning axis thereby traversing the beam spot along a first and second scan lines on the waveguide portion of the wavelength conversion device. The change in the output intensity of the wavelength conversion device is then determined based on the adjusted position of the adjustable optical component. The adjustable optical component is then positioned on the first scanning axis and the second scanning axis based on the determined changes in the output intensity of the wavelength conversion device such that the output intensity of the wavelength conversion device is maximized.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 23, 2012
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Garrett Andrew Piech, Daniel Ohen Ricketts
  • Patent number: 8204091
    Abstract: Particular embodiments of the present invention relate generally to semiconductor lasers and laser projections systems and, more particularly, to schemes for controlling semiconductor lasers. According to one embodiment of the present invention, a laser having a gain section, a phase section and a wavelength selective section is configured for optical emission of encoded data. The optical emission is shifted across a plurality of laser cavity modes by applying a quasi-periodic phase shifting signal I/V? to the phase section of the semiconductor laser. The amplitude of the quasi-periodic signal transitions periodically between a maximum drive level and a minimum drive level at a frequency that varies randomly over time.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: June 19, 2012
    Assignee: Corning Incorporated
    Inventors: Martin Hai Hu, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20120026488
    Abstract: Start-up methods for frequency converted light sources and projector systems comprising frequency converted light sources are described herein. The start-up methods generally comprise modulating the frequency converted light source over three degrees of freedom (two spatial dimensions and one wavelength dimension). Specifically, fast oscillation of an axis of an adjustable optical component is performed simultaneously with fast oscillation of a wavelength of the semiconductor laser while a second axis of the adjustable optical component is incrementally stepped and the output intensity of the frequency converted light source is monitored for each step. This start-up method allows for three linear searches to be used to rapidly locate the appropriate control settings for the frequency converted light source.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 2, 2012
    Inventors: Garrett Andrew Piech, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20110303820
    Abstract: A method for optimizing the alignment of an optical package includes directing a beam spot of a laser along a folded optical path and onto a waveguide portion of a wavelength conversion. The output intensity of the wavelength conversion device is measured as a position of an adjustable optical component is adjusted about a first scanning axis and a second scanning axis thereby traversing the beam spot along a first and second scan lines on the waveguide portion of the wavelength conversion device. The change in the output intensity of the wavelength conversion device is then determined based on the adjusted position of the adjustable optical component. The adjustable optical component is then positioned on the first scanning axis and the second scanning axis based on the determined changes in the output intensity of the wavelength conversion device such that the output intensity of the wavelength conversion device is maximized.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Inventors: Jacques Gollier, Garrett Andrew Piech, Daniel Ohen Ricketts
  • Patent number: 8045260
    Abstract: The present disclosure relates generally to semiconductor lasers and laser projection systems. According to one embodiment of the present disclosure, a method of operating a laser projection system is provided. According to the method, the laser projection system is utilized to display a sequence of pixelized image frames comprising an alternating sequence of relatively high intensity active projection periods ModON and relatively low intensity inactive projection periods ModOFF. A complementary control signal transitions between an active state QON during the relatively high intensity active projection periods ModON and an inactive state QOFF during the relatively low intensity inactive projection periods ModOFF.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 25, 2011
    Assignee: Corning Incorporated
    Inventors: Vikram Bhatia, Jacques Gollier, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 7920610
    Abstract: Methods of operating a frequency-converted laser source are disclosed. According to particular disclosed embodiments, a laser diode is driven in a pulsed mode to define pixel intensity values corresponding to desired gray scale values of image pixels in an image plane of the laser source. The pixel intensity values are a function of a laser control signal comprising a discontinuous pulse component, a relatively constant intensity component I, and a continuously variable intensity component I*. The pulse width w of the discontinuous pulse component is selected from a set of discrete available pulse widths according to a desired pixel gray scale value. A low-end pulse width w of the set of available pulse widths is established for a range of low-end pixel gray scale values and progressively larger pulse widths w are established for ranges of progressively higher pixel gray scale values.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 5, 2011
    Assignee: Corning Incorporated
    Inventors: David August Sniezek Loeber, Nobutoshi Sekiguchi, Daniel Ohen Ricketts
  • Publication number: 20110051762
    Abstract: Methods of operating a frequency-converted laser source are disclosed. According to particular disclosed embodiments, a laser diode is driven in a pulsed mode to define pixel intensity values corresponding to desired gray scale values of image pixels in an image plane of the laser source. The pixel intensity values are a function of a laser control signal comprising a discontinuous pulse component, a relatively constant intensity component I, and a continuously variable intensity component I*. The pulse width w of the discontinuous pulse component is selected from a set of discrete available pulse widths according to a desired pixel gray scale value. A low-end pulse width w of the set of available pulse widths is established for a range of low-end pixel gray scale values and progressively larger pulse widths w are established for ranges of progressively higher pixel gray scale values.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Inventors: David August Sniezek Loeber, Nobutoshi Sekiguchi, Daniel Ohen Ricketts
  • Publication number: 20100322272
    Abstract: The present invention relates generally to semiconductor lasers and laser projection systems. According to one embodiment of the present invention, a projected laser image is generated utilizing an output beam of the semiconductor laser. A gain current control signal is generated by a gain current feedback loop to control the gain section of the semiconductor laser. Wavelength fluctuations of the semiconductor laser are narrowed by incorporating a wavelength recovery operation in a drive current of the semiconductor laser and by initiating the wavelength recovery operations as a function of the gain current control signal or an optical intensity error signal. Additional embodiments are disclosed and claimed.
    Type: Application
    Filed: April 7, 2008
    Publication date: December 23, 2010
    Inventors: Martin Hai Hu, David August Sniezek Loeber, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 7769063
    Abstract: The present invention relates generally to semiconductor lasers and laser projection systems. According to one embodiment of the present invention, a method of correcting output power variations in a semiconductor laser is provided. According to the method, an output power feedback loop is utilized to generate optical intensity feedback signals representing actual output power of the laser source for discrete portions V1, Vi, . . . Vj of the image signal. Error signals E1, Ei, . . . Ej are generated representing the degree to which actual projected output power varies from a target projected output power for the discrete portions V1, Vi, . . . Vj of the image signal. These error signals E1, Ei, . . . Ej are utilized to apply corrected control signals G1?, Gi?, . . . Gj? to the gain section of the semiconductor laser for projection of compatible discrete portions V1?, Vi?, . . . Vj? of the image signal.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 3, 2010
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Martin Hai Hu, David August Sniezek Loeber, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 7756170
    Abstract: Methods of controlling semiconductor lasers are provided where the semiconductor laser generates a wavelength-modulated output beam ?MOD that is directed towards the input face of a wavelength conversion device. The intensity of a wavelength-converted output ?CONV of the device is monitored as the output beam of the laser is modulated and as the position of the modulated output beam ?MOD on the input face of the wavelength conversion device is varied. A maximum value of the monitored intensity is correlated with optimum coordinates representing the position of the modulated output beam ?MOD on the input face of the wavelength conversion device. The optical package is operated in the data projection mode by directing an intensity-modulated laser beam from the semiconductor laser to the wavelength conversion device using the optimum positional coordinates. Additional embodiments are disclosed and claimed. Laser controllers and projections systems are also provided.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: July 13, 2010
    Assignee: Corning Incorporated
    Inventors: Etienne Almoric, Vikram Bhatia, Jacques Gollier, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 7751045
    Abstract: A method for aligning a beam spot with a waveguide portion of a wavelength conversion device includes scanning a beam spot over the input face of the wavelength conversion device while measuring the output intensity of the device such that an output intensity for each of a plurality of fast scan lines is generated. A first alignment set point is then determined based on the output intensity of each fast scan line. A second scan of the beam spot is then performed over the fast scan line containing the first alignment set point while measuring the output intensity for each point along the fast scan line. A second alignment set point is then determined based on the output intensities measured during the second scan. The beam spot is then aligned with the waveguide portion using the first alignment set point and the second alignment set point.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: July 6, 2010
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Garrett Andrew Piech, Daniel Ohen Ricketts
  • Publication number: 20100150185
    Abstract: According to one embodiment of the present invention, an optical package comprises one or more semiconductor lasers coupled to a wavelength conversion device with adaptive optics. The optical package also comprises a package controller programmed to operate the semiconductor laser and the adaptive optics based on modulated feedback control signals supplied to the wavelength selective section of the semiconductor laser and the adaptive optics. The wavelength control signal supplied to the wavelength selective section of the semiconductor laser may be adjusted based on the modulated wavelength feedback control signal such that the response parameter of the wavelength conversion device is optimized. Similarly, the position control signals supplied to the adaptive optics may be adjusted based on the modulated feedback position control signals such that the response parameter of the wavelength conversion device is optimized.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 17, 2010
    Inventors: Jacques Gollier, Garrett Andrew Piech, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 7729397
    Abstract: According to one embodiment of the present invention, an optical package comprises one or more semiconductor lasers coupled to a wavelength conversion device with adaptive optics. The optical package also comprises a package controller programmed to operate the semiconductor laser and the adaptive optics based on modulated feedback control signals supplied to the wavelength selective section of the semiconductor laser and the adaptive optics. The wavelength control signal supplied to the wavelength selective section of the semiconductor laser may be adjusted based on the modulated wavelength feedback control signal such that the response parameter of the wavelength conversion device is optimized. Similarly, the position control signals supplied to the adaptive optics may be adjusted based on the modulated feedback position control signals such that the response parameter of the wavelength conversion device is optimized.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: June 1, 2010
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Garrett Andrew Piech, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20100103967
    Abstract: The present invention relates generally to semiconductor lasers and laser projection systems. According to one embodiment of the present invention, a method of correcting output power variations in a semiconductor laser is provided. According to the method, an output power feedback loop is utilized to generate optical intensity feedback signals representing actual output power of the laser source for discrete portions V1, Vi, . . . Vj of the image signal. Error signals E1, Ei, . . . Ej are generated representing the degree to which actual projected output power varies from a target projected output power for the discrete portions V1, Vi, . . . Vj of the image signal. These error signals E1, Ei, . . . Ej are utilized to apply corrected control signals G1?, Gi?, . . . Gj? to the gain section of the semiconductor laser for projection of compatible discrete portions V1?, Vi?, . . . Vj? of the image signal.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 29, 2010
    Inventors: Jacques Gollier, Martin Hai Hu, David August Sniezek Loeber, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20100098116
    Abstract: The present disclosure relates generally to semiconductor lasers and laser projection systems. According to one embodiment of the present disclosure, a method of operating a laser projection system is provided. According to the method, the laser projection system is utilized to display a sequence of pixelized image frames comprising an alternating sequence of relatively high intensity active projection periods ModON and relatively low intensity inactive projection periods ModOFF. A complementary control signal transitions between an active state QON during the relatively high intensity active projection periods ModON and an inactive state QOFF during the relatively low intensity inactive projection periods ModOFF.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Vikram Bhatia, Jacques Gollier, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20100002736
    Abstract: Particular embodiments of the present invention relate generally to semiconductor lasers and laser projections systems and, more particularly, to schemes for controlling semiconductor lasers. According to one embodiment of the present invention, a laser having a gain section, a phase section and a wavelength selective section is configured for optical emission of encoded data. The optical emission is shifted across a plurality of laser cavity modes by applying a quasi-periodic phase shifting signal I/V? to the phase section of the semiconductor laser. The amplitude of the quasi-periodic signal transitions periodically between a maximum drive level and a minimum drive level at a frequency that varies randomly over time.
    Type: Application
    Filed: July 3, 2008
    Publication date: January 7, 2010
    Inventors: Martin Hai Hu, Dragan Pikula, Daniel Ohen Ricketts