Patents by Inventor Daniel P. DEVER

Daniel P. DEVER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124895
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 18, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20230250423
    Abstract: The invention provides methods for generating a genetically modified human neural stem cell, genetically modified human neural stem cells, and pharmaceutical compositions comprising the genetically modified human neural stem cells. Also provided are associated kits. The invention also provides methods for preventing or treating a neurodegenerative disease or a neurological injury in a human subject using genetically modified human neural stem cells.
    Type: Application
    Filed: January 3, 2023
    Publication date: August 10, 2023
    Inventors: Matthew H. PORTEUS, Eric J. KILDEBECK, Daniel P. DEVER, Joseph T. CLARK, Ann TSUKAMOTO, Nobuko UCHIDA
  • Patent number: 11634732
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: April 25, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20220356450
    Abstract: The present disclosure provides methods and compositions for genetically modifying hematopoietic stem and progenitor cells (HSPCs), in particular by replacing the HBA1 or HBA2 locus in the HSPCs with a transgene encoding a therapeutic protein.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 10, 2022
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: MATTHEW H PORTEUS, MICHAEL KYLE CROMER, DANIEL P. DEVER, JOAB CAMARENA
  • Patent number: 11492646
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: November 8, 2022
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20220064676
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Application
    Filed: October 15, 2021
    Publication date: March 3, 2022
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20220025409
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Application
    Filed: October 15, 2021
    Publication date: January 27, 2022
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20220025408
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Application
    Filed: October 15, 2021
    Publication date: January 27, 2022
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: DANIEL P. DEVER, RASMUS O. BAK, AYAL HENDEL, WARACHAREE SRIFA, MATTHEW H. PORTEUS
  • Patent number: 11193141
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: December 7, 2021
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20190032091
    Abstract: In certain aspects, the present invention provides methods for inducing a stable gene modification of a target nucleic acid via homologous recombination in a primary cell, such as a primary blood cell and/or a primary mesenchymal cell. In certain other aspects, the present invention provides methods for enriching a population of genetically modified primary cells having targeted integration at a target nucleic acid. The methods of the present invention rely on the introduction of a DNA nuclease such as a Cas polypeptide and a homologous donor adeno-associated viral (AAV) vector into the primary cell to mediate targeted integration of the target nucleic acid. Also provided herein are methods for preventing or treating a disease in a subject in need thereof by administering to the subject any of the genetically modified primary cells or pharmaceutical compositions described herein to prevent the disease or ameliorate one or more symptoms of the disease.
    Type: Application
    Filed: March 21, 2018
    Publication date: January 31, 2019
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel P. Dever, Rasmus O. Bak, Ayal Hendel, Waracharee Srifa, Matthew H. Porteus
  • Publication number: 20170298348
    Abstract: The invention provides methods for generating a genetically modified human neural stem cell, genetically modified human neural stem cells, and pharmaceutical compositions comprising the genetically modified human neural stem cells. Also provided are associated kits. The invention also provides methods for preventing or treating a neurodegenerative disease or a neurological injury in a human subject using genetically modified human neural stem cells.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 19, 2017
    Inventors: Matthew H. PORTEUS, Eric J. KILDEBECK, Daniel P. DEVER, Joseph T. CLARK, Ann TSUKAMOTO, Nobuko UCHIDA
  • Patent number: 8688467
    Abstract: Systems and methods for operably coupling medical device(s) together with an evaluation device such that closed-loop processing may occur are provided. To achieve closed-loop processing, the evaluation device is configured to receive diagnostic information related to physiological attributes of a patient and operational-status information of the medical device(s). Upon receipt of this information, the evaluation device may automatically analyze the data and automatically compose instructions based on the analysis. Analyzing includes comparing the data against content within an electronic medical record (EMR) or applying rules to the data. The rules are built on evidence-based medical procedures consistent with current medical practice.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: April 1, 2014
    Assignee: Cerner Innovation, Inc.
    Inventors: Kyle R. Harrison, Lori N. Cross, Daniel P. Devers, Carlos Hernandez, Travis Miner, Arthur J. Hauck, Timothy Jimenez
  • Patent number: 8190447
    Abstract: Methods for use in, e.g., in-patient care computing environment, for user-centric (e.g., in-patient-centric) selection of at least one menu item are provided. A method in accordance with one embodiment of the present invention may include receiving a plurality of menu item identifiers, each menu item identifier being associated with a different menu item, associating the menu item identifiers with an electronic record associated with an in-patient, displaying the menu item identifiers on at least one patient-viewable display device, and receiving a user selection of at least one of the menu item identifiers. If desired, the method may additionally include filtering the menu item identifiers based on at least one criterion derived from the electronic record to create a set of filtered menu item identifiers and displaying the set of filtered menu item identifiers on the patient-viewable display device rather than the plurality of menu item identifier.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: May 29, 2012
    Assignee: Cerner Innovation, Inc.
    Inventors: Jill R. Hungerford, Charles Cameron Brackett, Daniel P. Devers
  • Publication number: 20100179820
    Abstract: Systems and methods for operably coupling medical device(s) together with an evaluation device such that closed-loop processing may occur are provided. To achieve closed-loop processing, the evaluation device is configured to receive diagnostic information related to physiological attributes of a patient and operational-status information of the medical device(s). Upon receipt of this information, the evaluation device may automatically analyze the data and automatically compose instructions based on the analysis. Analyzing includes comparing the data against content within an electronic medical record (EMR) or applying rules to the data. The rules are built on evidence-based medical procedures consistent with current medical practice.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 15, 2010
    Applicant: CERNER INNOVATION INC.
    Inventors: KYLE R. HARRISON, LORI N. CROSS, DANIEL P. DEVERS, CARLOS HERNANDEZ, TRAVIS MINER, ARTHUR J. HAUCK, TIMOTHY JIMENEZ