Patents by Inventor Daniel P. Rini

Daniel P. Rini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6993926
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: February 7, 2006
    Assignee: Rini Technologies, Inc.
    Inventors: Daniel P. Rini, H. Randolph Anderson, Jayanta Sankar Kapat, Louis Chow
  • Patent number: 6975465
    Abstract: The subject invention relates to beam control prisms and the use of a beam control prism to modify the beam properties of light emitted from an edge emitting diode laser. The subject invention can utilize a beam control prism placed next to a diode laser bar. The subject beam control prism can have, for example, a curved surface and/or a high reflective coated surface for a diode laser wavelength. The curved surface can collimate the fast axis divergence and the mirror surface can change the beam direction. The subject curved surface beam control prisms can incorporate one or more features, such as parabolic reflecting surface, elliptical exit surface with flat reflecting surface, and a hyperbolic entrance surface with flat reflecting surface.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: December 13, 2005
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Te-Yuan Chung, Michael Bass, Daniel P. Rini, H. Randolph Anderson, Louis Chow
  • Publication number: 20040129018
    Abstract: The subject invention pertains to a method and apparatus for cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient cooling system. The subject system can provide heat stress relief to individuals operating under, for example, hazardous conditions, or in elevated temperatures, while wearing protective clothing. The subject invention also relates to a condenser for transferring heat from a refrigerant to an external fluid in thermal contact with the condenser. The subject condenser can have a heat transfer surface and can be designed for an external fluid, such as air, to flow across the heat transfer surface and allow the transfer of heat from heat transfer surface to the external fluid. In a specific embodiment, the flow of the external fluid is parallel to the heat transfer surface.
    Type: Application
    Filed: July 22, 2003
    Publication date: July 8, 2004
    Inventors: Daniel P. Rini, Louis Chow, H. Randolph Anderson, Jayanta Sankar Kapat, Bradley Carman, Brian Gulliver, Jose Mauricio Recio
  • Publication number: 20030226371
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Application
    Filed: January 22, 2003
    Publication date: December 11, 2003
    Inventor: Daniel P. Rini
  • Publication number: 20030155434
    Abstract: The subject invention pertains to a spray nozzle apparatus and method of use. The subject spray nozzle can be used to spray atomized fluid. The atomized fluid can then be incident on a heated surface such that heat is transferred from the heated surface to the atomized fluid. The subject invention also relates to a spray-cooling system and method of use. The subject spray-cooling system can incorporate a spray nozzle and a heat transfer plate. A device to be cooled, such as a laser diode, microwave amplifier, or other high power electrical device, can be placed in direct thermal contact with the heat transfer plate. The spray from the spray nozzle can then be sprayed onto the heat transfer plate. In a specific embodiment, a cellular transfer plate can be used and the spray from the spray nozzle can be sprayed into a cellular cavity or compartment, within the heat transfer plate. Heat is transferred from the heat source to the sprayed liquid via the wall of the heat transfer plate.
    Type: Application
    Filed: January 14, 2003
    Publication date: August 21, 2003
    Inventors: Daniel P. Rini, H. Randolph Anderson
  • Patent number: 6571569
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: June 3, 2003
    Assignee: Rini Technologies, Inc.
    Inventors: Daniel P. Rini, H. Randolph Anderson, Jayanta Sankar Kapat, Louis Chow