Patents by Inventor Daniel P. Zilker, Jr.

Daniel P. Zilker, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11708438
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: July 25, 2023
    Assignee: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Publication number: 20210284770
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 16, 2021
    Applicant: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, JR., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Patent number: 11034783
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: June 15, 2021
    Assignee: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Patent number: 11028191
    Abstract: Embodiments of the present disclosure directed towards polymerization catalysts having improved ethylene enchainment. As an example, the present disclosure provides a polymerization catalyst having improved ethylene enchainment, the polymerization catalyst comprising a zirconocene catalyst of Formula (I) where R1 is a C1 to C20 alkyl, aryl or aralkyl group, wherein R2 is an C1 to C20 alkyl, aryl or aralkyl group, and where R3 is a C1 to C20 alkyl or a hydrogen, and where each X is independently a halide, C1 to C20 alkyl, aralkyl group or hydrogen.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 8, 2021
    Assignee: Univation Technologies, LLC
    Inventors: Roger L. Kuhlman, Mahsa McDougal, Timothy M. Boller, C. Jeff Harlan, Timothy R. Lynn, Cliff R. Mure, John F. Szul, Daniel P. Zilker, Jr.
  • Publication number: 20200031958
    Abstract: Embodiments of the present disclosure directed towards polymerization catalysts having improved ethylene enchainment. As an example, the present disclosure provides a polymerization catalyst having improved ethylene enchainment, the polymerization catalyst comprising a zirconocene catalyst of Formula (I) where R1 is a C1 to C20 alkyl, aryl or aralkyl group, wherein R2 is an C1 to C20 alkyl, aryl or aralkyl group, and where R3 is a C1 to C20 alkyl or a hydrogen, and where each X is independently a halide, C1 to C20 alkyl, aralkyl group or hydrogen.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 30, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Roger L. KUHLMAN, Mahsa McDOUGAL, Timothy M. BOLLER, C. Jeff HARLAN, Timothy R. LYNN, Cliff R. MURE, John F. SZUL, Daniel P. ZILKER, JR.
  • Patent number: 10399052
    Abstract: The use of induced condensing agent (ICA) in fluidized bed gas phase reactor systems enables higher production rates but can affect the resulting polyolefins melt index. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, by altering the concentration of olefin monomer within the reactor system.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: September 3, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Publication number: 20190177452
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 13, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, JR., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Patent number: 10308742
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer is formed by a trimmed catalyst system including a supported catalyst including bis(n-propylcyclopentadienyl) hafnium (R1)(R2) and a trim catalyst comprising meso-O(SiMe2Ind)2Zr(R1)(R2), wherein R1 and R2 are each, independently, methyl, chloro, fluoro, or a hydrocarbyl group.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: June 4, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, Daniel P. Zilker, Jr.
  • Patent number: 10253121
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 9, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi D. Hussein, Dongming Li, Steven A. Best
  • Patent number: 10167350
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: January 1, 2019
    Assignee: Univation Technologies, LLC
    Inventors: C. Dale Lester, Kevin J. Cann, Phuong A. Cao, Abarajith S. Hari, F. David Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, Jr., Mark G. Goode
  • Patent number: 10167351
    Abstract: The catalyst productivity of a polyolefin catalyst in the methods disclosed herein may be increased by increasing the concentration of an induced condensing agent (ICA) in the reactor system. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, in various ways.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 1, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Patent number: 10113019
    Abstract: The number of small gels that form in polyolefin thin films may be reduced by altering certain production parameters of the polyolefin. In some instances, the number of small gels may be influenced by the melt index of the polyolefin. However, in many instances, melt index is a critical part of the polyolefin product specification and, therefore, is not manipulated. Two parameters that may be manipulated to mitigate small gel count while maintaining the melt index are polyolefin residence time in the reactor and ICA concentration in the reactor.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 30, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, James M. Farley, Daniel P. Zilker, Jr.
  • Patent number: 9938361
    Abstract: Methods for producing catalyst systems with increased productivity are disclosed. The methods may comprise providing a catalyst composition comprising a solvent and a single-site catalyst component, heating an inert gas to a temperature in a range of from about 100° C. to about 150° C., and spray drying the catalyst composition in the presence of the inert gas to form a spray-dried catalyst system. Additionally, the methods may comprise providing a catalyst composition comprising a solvent, an activator, a filler material, a metallocene catalyst, and a Group 15-containing catalyst; heating an inert gas to a temperature in a range of from about 100° C. to about 150° C.; and spray drying the catalyst composition in the presence of the inert gas to form a spray-dried catalyst system.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: April 10, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Timothy R. Lynn, F. David Hussein, R. Eric Pequeno, Daniel P. Zilker, Jr., Bruce J. Savatsky, Michael D. Awe
  • Patent number: 9902790
    Abstract: A method of polymerizing olefins is disclosed. The method comprises contacting ethylene and at least one comonomer with a catalyst system to produce a polyolefin polymer that is multimodal. The catalyst system comprises a first catalyst that promotes polymerization of the ethylene into a low molecular weight (LMW) portion of the polyolefin polymer and a second catalyst that promotes polymerization of the ethylene into a high molecular weight (HMW) portion of the polyolefin polymer. The first catalyst and at least a portion of the second catalyst are co-supported to form a commonly-supported catalyst system and at least a portion of the second catalyst is added as a catalyst trim feed to the catalyst system.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: February 27, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Daniel D. Vanderlende, C. Jeff Harlan, Haiqing Peng, Michael D. Awe, Roger L. Kuhlman, Ching-Tai Lue, Timothy R. Lynn, Wesley R. Mariott, Daniel P. Zilker, Jr.
  • Patent number: 9850332
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer has a melt index ratio (MIR) greater than about 40. The polymer also has a value for Mw1/Mw2 of at least about 2.0, wherein Mw1/Mw2 is a ratio of a weight average molecular weight (Mw) for a first half of a temperature rising elution (TREF) curve from a cross-fractionation (CFC) analysis to an Mw for a second half of the TREF curve. The polymer also has a value for Tw1?Tw2 of less than about ?15° C., wherein Tw1?Tw2 is a difference of a weight average elution temperature (Tw) for the first half of the TREF curve to a Tw for the second half of the TREF curve.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: December 26, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, James M. Farley, Daniel P. Zilker, Jr.
  • Publication number: 20170362353
    Abstract: The catalyst productivity of a polyolefin catalyst in the methods disclosed herein may be increased by increasing the concentration of an induced condensing agent (ICA) in the reactor system. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, in various ways.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 21, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Publication number: 20170355790
    Abstract: The number of small gels that form in polyolefin thin films may be reduced by altering certain production parameters of the polyolefin. In some instances, the number of small gels may be influenced by the melt index of the polyolefin. However, in many instances, melt index is a critical part of the polyolefin product specification and, therefore, is not manipulated. Two parameters that may be manipulated to mitigate small gel count while maintaining the melt index are polyolefin residence time in the reactor and ICA concentration in the reactor.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 14, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, James M. Farley, Daniel P. Zilker, Jr.
  • Publication number: 20170259236
    Abstract: The use of induced condensing agent (ICA) in fluidized bed gas phase reactor systems enables higher production rates but can affect the resulting polyolefins melt index. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, by altering the concentration of olefin monomer within the reactor system.
    Type: Application
    Filed: November 24, 2015
    Publication date: September 14, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Patent number: 9637567
    Abstract: Spray-dried catalyst compositions comprising a transition metal complex and polymerization processes employing the same are disclosed herein. An embodiment provides a spray-dried catalyst composition comprising a transition metal catalyst component represented by the following formula: (I) and polymerization process employing the same.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: May 2, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Phuong A. Cao, Daniel P. Zilker, Jr., John H. Oskam, Cliff R. Mure
  • Publication number: 20170081432
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Applicant: Univation Technologies, LLC
    Inventors: C. Dale Lester, Kevin J. Cann, Phuong A. Cao, Abarajith S. Hari, F. David Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, JR., Mark G. Goode