Patents by Inventor Daniel Pantuso

Daniel Pantuso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11594524
    Abstract: An apparatus including a circuit structure including a device stratum; one or more electrically conductive interconnect levels on a first side of the device stratum and coupled to ones of the transistor devices; and a substrate including an electrically conductive through silicon via coupled to the one or more electrically conductive interconnect levels so that the one or more interconnect levels are between the through silicon via and the device stratum. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum; forming one or more interconnect levels on a first side of the device stratum; removing a portion of the substrate; and coupling a through silicon via to the one or more interconnect levels such that the one or more interconnect levels is disposed between the device stratum and the through silicon via.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Brennen K. Mueller, Patrick Morrow, Kimin Jun, Paul B. Fischer, Daniel Pantuso
  • Publication number: 20220415807
    Abstract: A device structure includes a first interconnect layer, a second interconnect layer, a device layer including a comprising a plurality of devices, where the device layer is between the first interconnect layer and the second interconnect layer. The device structure further includes a dielectric layer adjacent the second interconnect layer, where the dielectric layer includes one or more of metallic dopants or a plurality of metal structures, wherein the plurality of metal structures is electrically isolated from interconnect structures but in contact with a dielectric material of the second interconnect layer, and where the individual ones of the plurality of metal structures is above a region including at least some of the plurality of devices. The device structure further includes a substrate adjacent to the dielectric layer and a heat sink coupled with the substrate.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Chytra Pawashe, Lei Jiang, Colin Landon, Daniel Pantuso, Edwin Ramayya, Jeffrey Hicks, Mehmet Koker Aykol
  • Publication number: 20220130803
    Abstract: An apparatus including a circuit structure including a device stratum; one or more electrically conductive interconnect levels on a first side of the device stratum and coupled to ones of the transistor devices; and a substrate including an electrically conductive through silicon via coupled to the one or more electrically conductive interconnect levels so that the one or more interconnect levels are between the through silicon via and the device stratum. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum; forming one or more interconnect levels on a first side of the device stratum; removing a portion of the substrate; and coupling a through silicon via to the one or more interconnect levels such that the one or more interconnect levels is disposed between the device stratum and the through silicon via.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Inventors: Brennen K. MUELLER, Patrick MORROW, Kimin JUN, Paul B. FISCHER, Daniel PANTUSO
  • Patent number: 11251156
    Abstract: An apparatus including a circuit structure including a device stratum; one or more electrically conductive interconnect levels on a first side of the device stratum and coupled to ones of the transistor devices; and a substrate including an electrically conductive through silicon via coupled to the one or more electrically conductive interconnect levels so that the one or more inter connect levels are between the through silicon via and the device stratum. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum; forming one or more interconnect levels on a first side of the device stratum; removing a portion of the substrate; and coupling a through silicon via to the one or more interconnect levels such that the one or more interconnect levels is disposed between the device stratum and the through silicon via.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Brennen K. Mueller, Patrick Morrow, Kimin Jun, Paul B. Fischer, Daniel Pantuso
  • Patent number: 11195719
    Abstract: Embodiments of the present disclosure describe techniques for reducing in-plane distortion from wafer to wafer bonding using a dummy wafer. One embodiment is an apparatus formed using a dummy wafer, the apparatus comprising: a device layer fusion bonded to a first side of a carrier wafer, wherein the dummy wafer comprises a first wafer and the carrier wafer comprises a second wafer that is different than the first wafer; wherein the device layer comprise a portion of a third wafer that is different than the second wafer; and wherein a second opposite side of the carrier wafer includes: a removal process artifact, wherein a distortion signature present in the portion of the second wafer is indicative of the use of the dummy wafer fusion bonded to the second side of the carrier wafer, or a remainder of the dummy wafer. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: December 7, 2021
    Assignee: Intel Corporation
    Inventors: Chytra Pawashe, Daniel Pantuso
  • Patent number: 11171057
    Abstract: Fin-based transistor structures, such as finFET and nanowire transistor structures, are disclosed. The fins have a morphology including a wave pattern and/or one or more ridges and/or nodules which effectively mitigate fin collapse, by limiting the inter-fin contact during a fin collapse condition. Thus, while the fins may temporarily collapse during wet processing, the morphology allows the collapsed fins to recover back to their uncollapsed state upon drying. The fin morphology may be, for example, an undulating pattern having peaks and troughs (e., sine, triangle, or ramp waves). In such cases, the undulating patterns of neighboring fins are out of phase, such that inter-fin contact during fin collapse is limited to peak/trough contact. In other embodiments, one or more ridges or nodules (short ridges), depending on the length of the fin, effectively limit the amount of inter-fin contact during fin collapse, such that only the ridges/nodules contact the neighboring fin.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: November 9, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Chytra Pawashe, Anand S. Murthy, Daniel Pantuso, Tahir Ghani
  • Patent number: 11056356
    Abstract: Techniques and mechanisms for bonding a first wafer to a second wafer in the presence of a fluid, the viscosity of which is greater than a viscosity of air at standard ambient temperature and pressure. In an embodiment, a first surface of the first wafer is brought into close proximity to a second surface of the second wafer. The fluid is provided between the first surface and the second surface when a first region of the first surface is made to contact a second region of the second surface to form a bond. The viscosity of the fluid mitigates a rate of propagation of the bond along a wafer surface, which in turn mitigates wafer deformation and/or stress between wafers. In another embodiment, the viscosity of the fluid is changed dynamically while the bond propagates between the first surface and the second surface.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: July 6, 2021
    Assignee: Intel Corporation
    Inventors: Brennen K. Mueller, Daniel Pantuso, Mauro J. Kobrinsky, Chytra Pawashe, Myra McDonnell
  • Patent number: 10825752
    Abstract: Embodiments of the present disclosure describe techniques and configurations for integrated thermoelectric cooling. In one embodiment, a cooling assembly includes a semiconductor substrate, first circuitry disposed on the semiconductor substrate and configured to generate heat when in operation and second circuitry disposed on the semiconductor substrate and configured to remove the heat by thermoelectric cooling. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Lei Jiang, Edwin B. Ramayya, Daniel Pantuso, Rafael Rios, Kelin J. Kuhn, Seiyon Kim
  • Patent number: 10720345
    Abstract: Techniques and mechanisms for forming a bond between two wafers. In an embodiment, a first wafer and a second wafer are positioned with respective wafer holders, and are deformed to form a first deformation of the first wafer and a second deformation of the second wafer. The first deformation and the second deformation are symmetrical with respect to a centerline which is between the first wafer and the second wafer. A portion of the first deformation is made to contact, and form a bond with, another portion of the second deformation. The bond is propagated along respective surfaces of the wafers to form a coupling therebetween. In another embodiment, one of the wafer holders comprises one of an array of elements to locally heat or cool a wafer, or an array of displacement stages to locally deform said wafer.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 21, 2020
    Assignee: Intel Corporation
    Inventors: Mauro J. Kobrinsky, Myra McDonnell, Brennen K. Mueller, Chytra Pawashe, Daniel Pantuso, Paul B. Fischer, Lance C. Hibbeler, Martin Weiss
  • Patent number: 10707186
    Abstract: Techniques and mechanisms for forming a bond between wafers using a compliant layer. In an embodiment, a layer or layers of one or more compliant materials is provided on a first surface of a first wafer, and the one or more compliant layers are subsequently bonded to a second surface of a second wafer. The bonded wafers are heated to an elevated temperature at which a compliant layer exhibits non-elastic deformations to facilitate relaxation of stresses caused by wafer distortions. In another embodiment, a material of the compliant layer exhibits viscoelastic behavior at room temperature, wherein stress is mitigated by allowing wafer distortion to relax at room temperature.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Mauro J. Kobrinsky, Jasmeet S. Chawla, Stefan Meister, Myra McDonnell, Chytra Pawashe, Daniel Pantuso
  • Publication number: 20200066595
    Abstract: Fin-based transistor structures, such as finFET and nanowire transistor structures, are disclosed. The fins have a morphology including a wave pattern and/or one or more ridges and/or nodules which effectively mitigate fin collapse, by limiting the inter-fin contact during a fin collapse condition. Thus, while the fins may temporarily collapse during wet processing, the morphology allows the collapsed fins to recover back to their uncollapsed state upon drying. The fin morphology may be, for example, an undulating pattern having peaks and troughs (e., sine, triangle, or ramp waves). In such cases, the undulating patterns of neighboring fins are out of phase, such that inter-fin contact during fin collapse is limited to peak/trough contact. In other embodiments, one or more ridges or nodules (short ridges), depending on the length of the fin, effectively limit the amount of inter-fin contact during fin collapse, such that only the ridges/nodules contact the neighboring fin.
    Type: Application
    Filed: December 30, 2016
    Publication date: February 27, 2020
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, CHYTRA PAWASHE, ANAND S. MURTHY, DANIEL PANTUSO, TAHIR GHANI
  • Publication number: 20190304784
    Abstract: Embodiments of the present disclosure describe techniques for reducing in-plane distortion from wafer to wafer bonding using a dummy wafer. One embodiment is an apparatus formed using a dummy wafer, the apparatus comprising: a device layer fusion bonded to a first side of a carrier wafer, wherein the dummy wafer comprises a first wafer and the carrier wafer comprises a second wafer that is different than the first wafer; wherein the device layer comprise a portion of a third wafer that is different than the second wafer; and wherein a second opposite side of the carrier wafer includes: a removal process artifact, wherein a distortion signature present in the portion of the second wafer is indicative of the use of the dummy wafer fusion bonded to the second side of the carrier wafer, or a remainder of the dummy wafer. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Inventors: Chytra PAWASHE, Daniel PANTUSO
  • Publication number: 20180323174
    Abstract: An apparatus including a circuit structure including a device stratum; one or more electrically conductive interconnect levels on a first side of the device stratum and coupled to ones of the transistor devices; and a substrate including an electrically conductive through silicon via coupled to the one or more electrically conductive interconnect levels so that the one or more inter connect levels are between the through silicon via and the device stratum. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum; forming one or more interconnect levels on a first side of the device stratum; removing a portion of the substrate; and coupling a through silicon via to the one or more interconnect levels such that the one or more interconnect levels is disposed between the device stratum and the through silicon via.
    Type: Application
    Filed: December 23, 2015
    Publication date: November 8, 2018
    Inventors: Brennen K. MUELLER, Patrick MORROW, Kimin JUN, Paul B. FISCHER, Daniel PANTUSO
  • Patent number: 9691716
    Abstract: Techniques and structure are disclosed for enhancing fracture resistance of back-end interconnects and other such interconnect structures by increasing via density. Increased via density can be provided, for example, within the filler/dummified portion(s) of adjacent circuit layers within a die. In some cases, an electrically isolated (floating) filler line of an upper circuit layer may include a via which lands on a floating filler line of a lower circuit layer in a region corresponding to where the filler lines cross/intersect. In some such cases, the floating filler line of the upper circuit layer may be formed as a dual-damascene structure including such a via. In some embodiments, a via similarly may be provided between a floating filler line of the upper circuit layer and a sufficiently electrically isolated interconnect line of the lower circuit layer. The techniques/structure can be used to provide mechanical integrity for the die.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: June 27, 2017
    Assignee: INTEL CORPORATION
    Inventors: Christopher J. Jezewski, Mauro J. Kobrinsky, Daniel Pantuso, Siddharth B. Bhingarde, Michael P. O'Day
  • Publication number: 20160268218
    Abstract: Techniques and structure are disclosed for enhancing fracture resistance of back-end interconnects and other such interconnect structures by increasing via density. Increased via density can be provided, for example, within the filler/dummified portion(s) of adjacent circuit layers within a die. In some cases, an electrically isolated (floating) filler line of an upper circuit layer may include a via which lands on a floating filler line of a lower circuit layer in a region corresponding to where the filler lines cross/intersect. In some such cases, the floating filler line of the upper circuit layer may be formed as a dual-damascene structure including such a via. In some embodiments, a via similarly may be provided between a floating filler line of the upper circuit layer and a sufficiently electrically isolated interconnect line of the lower circuit layer. The techniques/structure can be used to provide mechanical integrity for the die.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 15, 2016
    Applicant: INTEL CORPORATION
    Inventors: CHRISTOPHER J. JEZEWSKI, MAURO J. KOBRINSKY, DANIEL PANTUSO, SIDDHARTH B. BHINGARDE, MICHAEL P. O'DAY
  • Patent number: 9343411
    Abstract: Techniques and structure are disclosed for enhancing fracture resistance of back-end interconnects and other such interconnect structures by increasing via density. Increased via density can be provided, for example, within the filler/dummified portion(s) of adjacent circuit layers within a die. In some cases, an electrically isolated (floating) filler line of an upper circuit layer may include a via which lands on a floating filler line of a lower circuit layer in a region corresponding to where the filler lines cross/intersect. In some such cases, the floating filler line of the upper circuit layer may be formed as a dual-damascene structure including such a via. In some embodiments, a via similarly may be provided between a floating filler line of the upper circuit layer and a sufficiently electrically isolated interconnect line of the lower circuit layer. The techniques/structure can be used to provide mechanical integrity for the die.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 17, 2016
    Assignee: INTEL CORPORATION
    Inventors: Christopher J. Jezewski, Mauro J. Kobrinsky, Daniel Pantuso, Siddharth B. Bhingarde, Michael P. O'Day
  • Publication number: 20160027717
    Abstract: Embodiments of the present disclosure describe techniques and configurations for integrated thermoelectric cooling. In one embodiment, a cooling assembly includes a semiconductor substrate, first circuitry disposed on the semiconductor substrate and configured to generate heat when in operation and second circuitry disposed on the semiconductor substrate and configured to remove the heat by thermoelectric cooling. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 18, 2013
    Publication date: January 28, 2016
    Inventors: Lei JIANG, Edwin B. RAMAYYA, Daniel PANTUSO, Rafael RIOS, Kelin J. KUHN, Selyon KIM
  • Publication number: 20140210098
    Abstract: Techniques and structure are disclosed for enhancing fracture resistance of back-end interconnects and other such interconnect structures by increasing via density. Increased via density can be provided, for example, within the filler/dummified portion(s) of adjacent circuit layers within a die. In some cases, an electrically isolated (floating) filler line of an upper circuit layer may include a via which lands on a floating filler line of a lower circuit layer in a region corresponding to where the filler lines cross/intersect. In some such cases, the floating filler line of the upper circuit layer may be formed as a dual-damascene structure including such a via. In some embodiments, a via similarly may be provided between a floating filler line of the upper circuit layer and a sufficiently electrically isolated interconnect line of the lower circuit layer. The techniques/structure can be used to provide mechanical integrity for the die.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Inventors: Christopher J. Jezewski, Mauro J. Kobrinsky, Daniel Pantuso, Siddharth B. Bhingarde, Michael P. O'Day
  • Patent number: 6646340
    Abstract: A thermally coupling electrically decoupling cooling device is described. The cooling device may be thermally disposed between a self-heating electrically conductive line and a semiconductor substrate to cool the line by transferring heat from the line to the substrate while blocking flow of current from the line to the substrate. The cooling device may contain a thermally conductive structure, such as a stack of vias and lines, to conduct heat away from the electrically conductive line, and a current blocking structure, such as a reverse biased diode or a capacitor, to block current flow into the substrate. Specific current blocking structures include a reverse biased diode containing an n-doped region and a p-doped region disposed between the thermally conductive structure and the substrate, and a capacitor containing a dielectric layer disposed between the thermally conductive structure and the semiconductor substrate.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: November 11, 2003
    Assignee: Intel Corporation
    Inventors: Timothy L. Deeter, Thomas Marieb, Daniel Murray, Daniel Pantuso, Sarangapani Sista
  • Publication number: 20030151131
    Abstract: A thermally coupling electrically decoupling cooling device is described. The cooling device may be thermally disposed between a self-heating electrically conductive line and a semiconductor substrate to cool the line by transferring heat from the line to the substrate while blocking flow of current from the line to the substrate. The cooling device may contain a thermally conductive structure, such as a stack of vias and lines, to conduct heat away from the electrically conductive line, and a current blocking structure, such as a reverse biased diode or a capacitor, to block current flow into the substrate. Specific current blocking structures include a reverse biased diode containing an n-doped region and a p-doped region disposed between the thermally conductive structure and the substrate, and a capacitor containing a dielectric layer disposed between the thermally conductive structure and the semiconductor substrate.
    Type: Application
    Filed: January 8, 2003
    Publication date: August 14, 2003
    Inventors: Timothy L. Deeter, Thomas Marieb, Daniel Murray, Daniel Pantuso, Sarangapani Sista