Patents by Inventor Daniel PAULSON

Daniel PAULSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250006371
    Abstract: Systems, methods, and computer programs disclosed herein relate to the recognition of threatening conditions in patients suffering from hypertension.
    Type: Application
    Filed: November 14, 2022
    Publication date: January 2, 2025
    Inventors: Hans-Peter PODHAISKY, Toeresin KARAKOYUN, Daniel PAULSON, Daniel Franz FREITAG, Frank KRAMER, Michael KREMLIOVSKY, Ying CHEN, Eren Metin ELCI
  • Patent number: 12140774
    Abstract: An afocal sensor assembly detects a light beam with an aberrated wavefront. The afocal sensor assembly is configured to provide sorted four-dimensional (4D) light field information regarding the light beam, for example, via one or more plenoptic images. Based on the 4D light field information, a lossy reconstruction of an aberrated wavefront for one or more actuators of an adaptive optics (AO) device is performed. The AO device can be controlled based on the lossy reconstruction to correct the wavefront of the light beam. In some embodiments, the aberrated wavefront is due to passage of the light beam through atmospheric turbulence, and the lossy reconstruction and correction using the AO device is performed in less than 1.0 ms. The lossy reconstruction of the aberrated wavefront can have a phase accuracy in a range of ?/2 to ?/30.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: November 12, 2024
    Assignee: University of Maryland, College Park
    Inventors: Chensheng Wu, Jonathan Ko, John R. Rzasa, Christopher C. Davis, Daniel Paulson
  • Publication number: 20220171204
    Abstract: An afocal sensor assembly detects a light beam with an aberrated wavefront. The afocal sensor assembly is configured to provide sorted four-dimensional (4D) light field information regarding the light beam, for example, via one or more plenoptic images. Based on the 4D light field information, a lossy reconstruction of an aberrated wavefront for one or more actuators of an adaptive optics (AO) device is performed. The AO device can be controlled based on the lossy reconstruction to correct the wavefront of the light beam. In some embodiments, the aberrated wavefront is due to passage of the light beam through atmospheric turbulence, and the lossy reconstruction and correction using the AO device is performed in less than 1.0 ms. The lossy reconstruction of the aberrated wavefront can have a phase accuracy in a range of ?/2 to ?/30.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 2, 2022
    Inventors: Chensheng WU, Jonathan KO, John R. RZASA, Christopher C. DAVIS, Daniel PAULSON