Patents by Inventor Daniel Perez Calero

Daniel Perez Calero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170343889
    Abstract: This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
    Type: Application
    Filed: August 14, 2017
    Publication date: November 30, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Peter Riel, Markus Rossi, Daniel Pérez Calero, Matthias Gloor, Moshe Doron, Dmitry Bakin, Philippe Bouchilloux
  • Patent number: 9768361
    Abstract: This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: September 19, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Peter Riel, Markus Rossi, Daniel Pérez Calero, Matthias Gloor, Moshe Doron, Dmitry Bakin, Philippe Bouchilloux
  • Publication number: 20170135617
    Abstract: The present disclosure describes modules operable to perform optical sensing. The module can be operable to distinguish between signals indicative of reflections from an object or interest and signals indicative of a spurious reflection such as from a smudge (i.e., a blurred or smeared mark) on the host device's cover glass. Signals assigned to reflections from the object of interest can be used to for various purposes, depending on the application (e.g., determining an object's proximity, a person's heart rate or a person's blood oxygen level).
    Type: Application
    Filed: July 13, 2015
    Publication date: May 18, 2017
    Inventors: Jukka Alasirniö, Tobias Senn, Mario Cesana, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Pérez Calero, Bassam Hallal, Jens Geiger
  • Publication number: 20170108699
    Abstract: The present disclosure describes optoelectronic modules (e.g., hybrid lens array packages) that have multiple optical channels, each of which includes at least one beam shaping element (e.g., a lens) that is part of a laterally contiguous array. Each optical channel is associated with a respective light sensitive region of an image sensor. Some or all of the channels also can include at least one beam shaping element (e.g., a lens) that is not part of a laterally contiguous array. In some cases, the arrays can include alignment features to facilitate alignment of the arrays with one another.
    Type: Application
    Filed: June 4, 2015
    Publication date: April 20, 2017
    Inventors: Daniel Perez Calero, Kai Engelhardt, Hartmut Rudmann, Tobias Senn
  • Publication number: 20170090018
    Abstract: The present disclosure describes optical imaging and optical detection modules that include sensors such as time-of-flight (TOF) sensors. Various implementations are described that, in some instances, can help reduce the amount of optical cross-talk between active detection pixels and reference pixels and/or can facilitate the ability of the sensor to determine an accurate phase difference to be used, for example, in distance calculations.
    Type: Application
    Filed: March 13, 2015
    Publication date: March 30, 2017
    Inventors: Bernhard Buettgen, Miguel Bruno Vaello Paños, Stephan Beer, Michael Lehmann, Daniel Pérez Calero, Sophie Godé, Bassam Hallal
  • Publication number: 20170038459
    Abstract: Optoelectronic modules (100) are operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection. Various modules are operable to recognize spurious reflections by means of dedicated spurious-reflection detection pixels (126) and, in some cases, also to compensate for errors caused by spurious reflections.
    Type: Application
    Filed: March 13, 2015
    Publication date: February 9, 2017
    Applicant: Heptogaon Micro Optics Pte Ltd.
    Inventors: Jens Kubacki, Jim Lewis, Miguel Bruno Vaello Paños, Michael Lehmann, Stephan Beer, Bernhard Buettgen, Daniel Pérez Calero, Bassam Hallal
  • Publication number: 20170016767
    Abstract: The present disclosure concerns a spectrometer (10) and method for generating a two dimensional spectrum (S). The spectrometer (10) comprises a main grating (3) and cross dispersion element (2). An imaging mirror (4) is arranged for reflecting and focussing dispersed radiation (R3) from the main grating (3) towards an image plane (IP) for imaging the two dimensional spectrum (S) onto an image plane (IP) of the spectrometer (10). A correction lens (6) is arranged for correcting optical aberrations in the imaging of the two dimensional spectrum (S) in the image plane (IP). The imaging mirror (4) and correction lens (6) have a coinciding axis of cylindrical symmetry (AS).
    Type: Application
    Filed: December 16, 2014
    Publication date: January 19, 2017
    Inventors: James Peter Robert DAY, Kees MODDEMEIJER, Daniel PEREZ CALERO, Tom DUIVENVOORDE, Marijn SANDTKE
  • Publication number: 20160306265
    Abstract: This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
    Type: Application
    Filed: July 22, 2015
    Publication date: October 20, 2016
    Inventors: Peter Riel, Markus Rossi, Daniel Pérez Calero, Matthias Gloor, Moshe Doron, Dmitry Bakin, Philippe Bouchilloux
  • Publication number: 20160245693
    Abstract: The present disclosure concerns a monolithic spectrometer (1) for spectrally resolving light (R). The spectrometer (1) comprises a body (2) of solid material having optical surfaces (3, 4, 5, 6, 8) arranged to guide the light (R) along an optical path (E1, E2, E3, E4) inside the body (2). A collimating surface (4) and focusing surface (6) are part of a single surface having a continuous optically functional shape. The surfaces (3,4,5,6,8) of the body (2) are arranged to have a third or fourth part (E3, E4) of the optical path between a grating surface (5) and an exit surface (8) cross (C) with a first part (E1) of the optical path between an entry surface (3) and a collimating surface (4).
    Type: Application
    Filed: October 1, 2014
    Publication date: August 25, 2016
    Inventors: Daniel Perez Calero, James Peter Robert Day, Tom Duivenvoorde, Marijn Sandtke
  • Publication number: 20160235345
    Abstract: The present disclosure concerns a measuring probe (10) for non-invasive in vivo measurement of blood analytes (33) by Raman spectroscopy. The measuring probe (10) comprises a housing (20) having a skin engaging surface (21). The housing (20) comprises a first optical system (1, 3, 4) arranged for providing source light (11) to the skin engaging surface (21) for penetrating a subject's skin (31) by said source light (11) for interacting with the blood analytes (33). The housing (20) further comprises a second optical system (5, 6, 2) arranged for capturing scattered Raman light (12) from the blood analytes (33) for measurement of the blood analytes (33). The first optical system (1, 3, 4) is arranged for providing the source light (11) as a collimated beam (1c) onto the skin (31).
    Type: Application
    Filed: October 1, 2014
    Publication date: August 18, 2016
    Applicants: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO, Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Daniel Perez Calero, James Peter Robert Day, Jacobus Thomas Wilhelmus Elisabeth Vogels, Maarten J. Scholtes-Timmerman, Jacobus Johannes Frederik van Veen
  • Patent number: 7898646
    Abstract: A system and method provides high speed variable attenuators. The attenuators can be used within a lithographic apparatus to control intensity of radiation in one or more correction pulses used to correct a dose of the radiation following an initial pulse of radiation.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: March 1, 2011
    Assignees: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Oscar Franciscus Jozephus Noordman, Justin L. Kreuzer, Henri Johannes Petrus Vink, Teunis Cornelis Van Den Dool, Daniel Perez Calero