Patents by Inventor Daniel Piper

Daniel Piper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160126152
    Abstract: Provided is a test pattern structure for determining overlay accuracy in a semiconductor device. The test pattern structure includes one or more resistor structures formed by patterning a lower silicon layer. Each includes a zigzag portion with leads at different spatial locations. An upper pattern is formed and includes at least one pattern feature formed over the resistor or resistors. The portions of the resistor or resistors not covered by the upper pattern feature will become silicided during a subsequent silicidation process. Resistance is measured to determine overlay accuracy as the resistor structures are configured such that the resistance of the resistor structure is determined by the degree of silicidation of the resistor structure which is determined by the overlay accuracy between the upper and lower patterns.
    Type: Application
    Filed: January 8, 2016
    Publication date: May 5, 2016
    Inventor: Daniel Piper
  • Patent number: 9252202
    Abstract: Provided is a test pattern structure for determining overlay accuracy in a semiconductor device. The test pattern structure includes one or more resistor structures formed by patterning a lower silicon layer. Each includes a zigzag portion with leads at different spatial locations. An upper pattern is formed and includes at least one pattern feature formed over the resistor or resistors. The portions of the resistor or resistors not covered by the upper pattern feature will become silicided during a subsequent silicidation process. Resistance is measured to determine overlay accuracy as the resistor structures are configured such that the resistance of the resistor structure is determined by the degree of silicidation of the resistor structure which is determined by the overlay accuracy between the upper and lower patterns.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: February 2, 2016
    Assignee: WAFERTECH, LLC
    Inventor: Daniel Piper
  • Patent number: 9035418
    Abstract: A shallow trench isolation (STI) structure includes a top surface formed completely of silicon nitride. The top surface of the STI structure is coplanar with a top substrate surface or extends above the top substrate surface. The STI structures include further dielectric materials beneath the silicon nitride and an oxide liner and any portions that extend above the substrate surface are formed of silicon nitride.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: May 19, 2015
    Assignee: WAFERTECH, LLC
    Inventors: Daniel Piper, Franklin Chiang, Ganesh Yerubandi
  • Patent number: 8841676
    Abstract: A vertically integrated semiconductor device includes multiple continuous single crystal silicon layers vertically separated from one another by a dielectric layer or layers. Semiconductor devices are disposed on an underlying single crystal silicon substrate and the continuous single crystal silicon layers. The individual devices are interconnected to one another using tungsten or doped polysilicon leads that extend through openings formed in the continuous single crystal silicon layers. The method for forming the structure includes forming a dielectric material over the single crystal silicon layer or substrate and forming an opening extending down to the surface of the single crystal silicon material to act as a seed layer. An epitaxial silicon growth process begins at the seed location and laterally overgrows the openings. Growth fronts from the various seed locations meet to form a continuous single crystal silicon layer which is then polished.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: September 23, 2014
    Assignee: Wafertech, LLC
    Inventor: Daniel Piper
  • Publication number: 20130334652
    Abstract: A shallow trench isolation (STI) structure includes a top surface formed completely of silicon nitride. The top surface of the STI structure is coplanar with a top substrate surface or extends above the top substrate surface. The STI structures include further dielectric materials beneath the silicon nitride and an oxide liner and any portions that extend above the substrate surface are formed of silicon nitride.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: WaferTech, LLC
    Inventors: Daniel Piper, Franklin Chiang, Ganesh Yerubandi
  • Publication number: 20130285195
    Abstract: A vertically integrated semiconductor device includes multiple continuous single crystal silicon layers vertically separated from one another by a dielectric layer or layers. Semiconductor devices are disposed on an underlying single crystal silicon substrate and the continuous single crystal silicon layers. The individual devices are interconnected to one another using tungsten or doped polysilicon leads that extend through openings formed in the continuous single crystal silicon layers. The method for forming the structure includes forming a dielectric material over the single crystal silicon layer or substrate and forming an opening extending down to the surface of the single crystal silicon material to act as a seed layer. An epitaxial silicon growth process begins at the seed location and laterally overgrows the openings. Growth fronts from the various seed locations meet to form a continuous single crystal silicon layer which is then polished.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventor: Daniel PIPER
  • Patent number: 8546250
    Abstract: A vertically integrated semiconductor device includes multiple continuous single crystal silicon layers vertically separated from one another by a dielectric layer or layers. Semiconductor devices are disposed on an underlying single crystal silicon substrate and the continuous single crystal silicon layers. The individual devices are interconnected to one another using tungsten or doped polysilicon leads that extend through openings formed in the continuous single crystal silicon layers. The method for forming the structure includes forming a dielectric material over the single crystal silicon layer or substrate and forming an opening extending down to the surface of the single crystal silicon material to act as a seed layer. An epitaxial silicon growth process begins at the seed location and laterally overgrows the openings. Growth fronts from the various seed locations meet to form a continuous single crystal silicon layer which is then polished.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: October 1, 2013
    Assignee: Wafertech LLC
    Inventor: Daniel Piper
  • Patent number: 8530327
    Abstract: A shallow trench isolation (STI) structure and methods for forming the same provide an STI structure with a top surface formed completely of silicon nitride. The methods for forming the STI structures provide for at least one nitride deposition step followed by a further nitride deposition step to re-fill divots that occur along the upper portions of the trench sidewalls.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 10, 2013
    Assignee: Wafertech, LLC
    Inventors: Daniel Piper, Franklin Chiang, Ganesh Yerubandi
  • Publication number: 20130048979
    Abstract: Provided is a test pattern structure for determining overlay accuracy in a semiconductor device. The test pattern structure includes one or more resistor structures formed by patterning a lower silicon layer. Each includes a zigzag portion with leads at different spatial locations. An upper pattern is formed and includes at least one pattern feature formed over the resistor or resistors. The portions of the resistor or resistors not covered by the upper pattern feature will become silicided during a subsequent silicidation process. Resistance is measured to determine overlay accuracy as the resistor structures are configured such that the resistance of the resistor structure is determined by the degree of silicidation of the resistor structure which is determined by the overlay accuracy between the upper and lower patterns.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: WAFERTECH, LLC
    Inventor: Daniel Piper
  • Publication number: 20130049161
    Abstract: A shallow trench isolation (STI) structure and methods for forming the same provide an STI structure with a top surface formed completely of silicon nitride. The methods for forming the STI structures provide for at least one nitride deposition step followed by a further nitride deposition step to re-fill divots that occur along the upper portions of the trench sidewalls.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: WAFERTECH, LLC
    Inventors: Daniel Piper, Franklin Chiang, Ganesh Yerubandi
  • Publication number: 20130043554
    Abstract: A vertically integrated semiconductor device includes multiple continuous single crystal silicon layers vertically separated from one another by a dielectric layer or layers. Semiconductor devices are disposed on an underlying single crystal silicon substrate and the continuous single crystal silicon layers. The individual devices are interconnected to one another using tungsten or doped polysilicon leads that extend through openings formed in the continuous single crystal silicon layers. The method for forming the structure includes forming a dielectric material over the single crystal silicon layer or substrate and forming an opening extending down to the surface of the single crystal silicon material to act as a seed layer. An epitaxial silicon growth process begins at the seed location and laterally overgrows the openings. Growth fronts from the various seed locations meet to form a continuous single crystal silicon layer which is then polished.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: WAFERTECH, LLC
    Inventor: Daniel Piper
  • Patent number: 7631286
    Abstract: A method, system and encoded computer instructions provide for automatic generation of a metrology recipe without referencing a wafer. The highly accurate metrology recipe provides for locating measurement locations corresponding to test features on the wafer and directing the metrology tool to the locations, by calculating coordinates for the measurement locations based on mask data, lithography tool data, CAD data and process data. The metrology recipe directs the metrology tool to within 10 microns of test features formed on the wafer. Criteria may be input to a data base to identify multiple existing recipes and the automatically generated recipe may be generated to replace each identified recipe.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: December 8, 2009
    Assignee: Wafertech LLC
    Inventors: Daniel Piper, Scott Westfall
  • Publication number: 20070156275
    Abstract: A method, system and encoded computer instructions provide for automatic generation of a metrology recipe without referencing a wafer. The highly accurate metrology recipe provides for locating measurement locations corresponding to test features on the wafer and directing the metrology tool to the locations, by calculating coordinates for the measurement locations based on mask data, lithography tool data, CAD data and process data. The metrology recipe directs the metrology tool to within 10 microns of test features formed on the wafer. Criteria may be input to a data base to identify multiple existing recipes and the automatically generated recipe may be generated to replace each identified recipe.
    Type: Application
    Filed: December 30, 2005
    Publication date: July 5, 2007
    Inventors: Daniel Piper, Scott Westfall